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(Tentative) Thesis Statement

Thesis Statement
Through modern statistical tools, sampling heuristics, and

optimization techniques, we find sample-efficient algorithms that
learn the approximate equilibria of simulation-based games
and use them to empirically design mechanisms.
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Part 1:
Learning Equilibria of Simulation-Based Games

Improved Algorithms for Learning Equilibria in Simulation-Based Games.
Enrique Areyan Viqueira, Cyrus Cousins, Amy Greenwald.
19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS20).

Learning Simulation-Based Games from Data.
Enrique Areyan Viqueira, Amy Greenwald, Cyrus Cousins, Eli Upfal.
18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS19).
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Simulation-Based Games

Game theory is the standard conceptual framework to analyze
the interaction among strategic agents

At the heart of game theory is the notion of a Game - a
mathematical object: players, actions, and utilities

Often, an analyst can specify a game description completely. But,
there are games too complex to afford a complete description
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Simulation-Based Games - Examples

l

NTARCRAFT

m StarCraft: a real-time strategy game

® Hundreds of units and buildings, large strategy space

sssssssssssss

®m Deepmind! recently built the first Al to defeat a top player

Their parameterization of the game has an average of

10%° legal actions at each step!

[1] https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
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Simulation-Based Games - Pervasive in Real Life

As fun as StarCraft might be, think of it as a model for important,

real-world applications such as:

Electronic advertisement (TAC AdX - https://sites.google.com/site/gameadx/)

Energy markets (Power TAC - https://powertac.org/)

Industrial supply chains (ANAC-SCML http://web.tuat.ac.jp/~katfuji/ANAC2019/#scm)

etc.
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Simulation-Based Games - Characteristics

Games are too complex to exactly compute expected utilities

Many sources of complexity, in the StarCraft example

different terrains, units, actions, etc.

Nevertheless, in simulation-based games, one can obtain

samples of utilities by running a game simulator
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Simulation-Based Games - Mathematical Model
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Simulation-Based Games - Mathematical Model
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Simulation-Based Games - Heuristics

® Actions spaces are vast, so usually no optimal strategies are

available. Instead, there are a few heuristics.

w—){s1= 1 S,= Igl,%: 1. 19,= Igl}
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Plan for the rest of Part 1

® High-level Goal: learn the equilibria of simulation-based games
B Formalize simulation-based games and their equilibria

B Learning algorithms and experimental results
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A Mathematical Model - Conditional and Expected Games
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..., S.), where s, is agent's i strategy

W Letu,(s) be player p's utility when strategy profile 5 is played

¥ Model randomness by postulating a set of conditions ", such

that given x € ', we obtain a utility function u,(s; x)

W Given a distribution & over condition set 2, we define the

expected utility i,(5) = E, g[u,(s; x)]

®m The expected game (the normal-form game with expected

utilities) is then our model of a simulation-based game
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A Mathematical Model - Empirical Games
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A Mathematical Model - Empirical Games

Recall that, in practice, we only observe samples of the utilities of

simulation-based games

Given m samples: up(f; X1), up(§; X)), up(f; X,)

o o ofe . DA N i m -
The empirical utility is the average: it,(s) = — Zi=1 U, (83 X;)

The empirical game has empirical utilities for every player and

strategy profile
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Goal

Learn, with provable guarantees, all the equilibria of expected

games given access only to empirical games

(Other valid and interesting goals:

+ recover one equilibrium, e.g., by following best-response dynamics)
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Approximation Framework

Our fundamental tool: e-uniform approximations (here € > 0).

A game G is an e-uniform approximation of game Gy it

Vp, 5t luy(5) —uy(5)| < e

Gl Slcol Szcol G2 Slcol Szcol
Srow 1, -1 3.0 Srow 1,1 | -3,0+¢
7 | 0,3 | 2,2 7| 0,3ee | 2472
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Vp, s luy(5) —uj(5)| < e
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Approximation Framework

Our fundamental tool: e-uniform approximations (here € > 0).

A game G is an e-uniform approximation of game Gy it
Vp, 5t luy(5) —uy(5)| < e

G, is e-close to G,

Gy Scol S5 G, i S5t

Syov 1, -1 3,0 Srov 1,-1 | 3,069

Syow 0,-3 2, -2 Srow 0, - A@r
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Approximation Framework

For simulation-based games, X', and & are complex objects. We

can't reasonably hope to compute the expected game exactly

Even if we could approximate each ii,(s) (say, up to &), would that

destroy the equilibria?

Definition: a strategy profile s is an e-equilibrium if players don't

have incentive to deviate, up to ¢, fixing other players' strategies
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Approximating Equilibria - First Result
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Approximating Equilibria - First Result

Tuyls, K. et al.
Theorem: (Recall-Precision) Bounds and dynamics

for empirical game
theoretic analysis, 2020.

W |f G is an e-uniform approximation of game Gy, then
® Recall: Every equilibrium of Gy is a 2e-equilibrium of Gy
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Approximating Equilibria - First Result

Tuyls, K. et al.
Theorem: (Recall-Precision) Bounds and dynamics

for empirical game
theoretic analysis, 2020.

It G is an e-uniform approximation of game Gy, then

Recall: Every equilibrium of Gy is a 2e-equilibrium of G

Precision: Every 2e-equilibrium of Gy is a 4e-equilibrium of G;

With probability at least 1-6

N( ) & N, (estimated game) = N, (

true positives

® false positives

estimated game
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Learning Equilibria

How to learn the approximate equilibria

Original

of a simulation-based game from sample data? Goal

How to learn an e-uniform approximation of Mathematically

Precise Goal

an expected game from sample data?
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Learning Algorithms - A Baseline

m We present two Probably Approximate Correct (PAC) algorithm

to learn empirical games

® PAC algorithm: given g,6 > 0, learn some model (games!) up

to error at most € and with probability at least 1 — 6

W The first algorithm is a baseline that uses Hoeffding's Inequality

to estimate all utilities of a simulation-based game

Tuyls, K. et al.
Bounds and dynamics

for empirical game
theoretic analysis, 2020.
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Learning Algorithms - Progressive Sampling with Pruning

W Recall our goal: learn equilibria. Not all utilities we learn are
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Learning Algorithms - Progressive Sampling with Pruning

Recall our goal: learn equilibria. Not all utilities we learn are

relevant to get at equilibria. For example,

Slcol SZCOZ
Srow 3 3 0,5 What value of ¢ is enough to
estimate the equilibrium of
this game?
5,7 5,0 2,2
e <1

|dea: take a few samples first, then take more samples of only those

profiles that can't be refuted as part of an equilibrium
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Algorithm: Progressive Sampling With Pruning
Initially, all p, s are active. Initial error ¢, is "big".

While some target accuracy € is not reached (e < €,) or

we run out of sampling budget or

there are no more active p, s
« Sample all active p, s, up to current error ¢,
 Forall active s

* if 5 can be refuted as part of an equilibrium,

then remove it from the active set

» Decrease the target error ¢,, ;| < €, — constant <=
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Experimental Setup

We use GAMUT (gamut.stanford.edu) to generate games

We use Gambit (www.gambit-project.org) for equilibria

computation

We developed a python library (github.com/eareyan/pysegta)

that implements our learning algorithms and interfaces with both
GAMUT and Gambit.
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Experimental Results - Summary

Pruning is highly data efficient over a wide range of games,

specifically, over 10 different classes of games

Efficiency is due to the algorithm exploiting the strategic structure

of games without knowing a priori what this structure is!

In our paper, we also discussed a rather pathological example of a

game where pruning is not effective
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Experimental Results - Summary

€ <0.125 £ <0.25 £<0.5 e<1.0
Bound Hoeffding Emp. Bennett Hoeffding Emp. Bennett Hoeffding Emp. Bennett Hoeffding Emp. Bennett
Game/Algorithm GS; PSP; epsp GS;PSP; epsp | GS;PSP;epsp  GS; PSP; epsp | GS; PSP;epsp  GS; PSP; epsp | GS; PSP; epsp  GS; PSP; epsp
Congestion Games (5 facilities) | 3,051; 1,654; 0.08 3,051; 1,449; 0.00 | 762; 464; 0.17 762; 364; 0.01 | 190; 146; 0.34 190; 93; 0.01 47, 58; 0.70 47, 25; 0.04
Zero-Sum Games (30 strategies) | 2,841; 1,691; 0.08 2,841; 1,383; 0.00 | 710; 502; 0.17 710; 349; 0.01 | 177; 166; 0.35 177; 90; 0.01 44; 62; 0.71 44, 25; 0.04
Random Games (30 strategies) | 2,841; 1,666; 0.08 2,841; 1,375; 0.00 | 710;491;0.17 710; 347;0.01 | 177; 159; 0.35 177; 90; 0.01 44; 58; 0.71 44, 25; 0.04
Congestion Games (4 facilities) 622; 492; 0.09 622; 438; 0.00 | 156; 138;0.17 156; 110; 0.01 39; 41, 0.35 39; 28; 0.01 10; 15; 0.71 10; 8; 0.04
Zero-Sum Games (20 strategies) 1,171; 829; 0.09 1,171; 708; 0.00 | 293; 240; 0.17 293; 179; 0.01 73;77; 0.35 73; 46; 0.01 18; 28; 0.71 18; 13; 0.04
Random Games (20 strategies) 1,171, 809; 0.09 1,171; 698; 0.00 | 293; 232; 0.17 293; 176; 0.01 73;73;0.35 73; 45; 0.01 18; 25; 0.71 18; 12; 0.04
Congestion Games (3 facilities) 114; 145; 0.09 114; 135; 0.00 29; 40; 0.18 29; 34; 0.01 7;12; 0.36 7;9; 0.02 2;4;0.73 2;2;0.05
Zero-Sum Games (10 strategies) 254; 268; 0.09 254; 242; 0.00 63; 73; 0.18 63;61; 0.01 16; 22;0.36 16; 15;0.02 4;7,0.73 4; 4; 0.05
Random Games (10 strategies) 254; 254, 0.09 254; 233; 0.00 63; 69; 0.18 63; 59; 0.01 16; 21;0.36 16; 15; 0.02 4;7;0.72 4; 4, 0.05
Congestion Games (2 facilities) 17; 37; 0.09 17; 37; 0.00 4; 10; 0.19 4;9; 0.01 1; 3; 0.38 1; 2; 0.02 1; 1; 0.76 1; 1; 0.05
Zero-Sum Games (5 strategies) 54; 94; 0.09 54; 89; 0.00 13; 25; 0.18 13; 22; 0.01 3;,7,0.37 3; 6;0.02 1; 2; 0.75 1; 1; 0.05
Random Games (5 strategies) 54; 83; 0.09 54; 90; 0.00 13; 22;0.18 13; 20; 0.01 3; 6; 0.37 3;5;0.02 1;2;0.74 1; 1; 0.05

Table 1: PSP’s sample efficiency. Numbers of samples are reported in tens of thousands. The values in bold are smaller than
their counterparts; as ¢ is fixed, they indicate the more sample efficient algorithms.
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We contribute an end-to-end methodology for the analysis of

simulation-based games

We prove tight bounds on the set of approximate equilibria of

games learned from data

We present and empirically evaluate a learning algorithm that
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Part 2:
Empirical Mechanism Design

Empirical Mechanism Design: Designing Mechanisms from Data.
Enrique Areyan Viqueira, Cyrus Cousins, Yasser Mohammad, Amy Greenwald.
Uncertainty in Artificial Intelligence (UAI19).

On Approximate Welfare-and Revenue-Maximizing Equilibria for Size-Interchangeable Bidders.

Enrique Areyan Viqueira, Amy Greenwald, Victor Naroditskiy.
16th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS17).
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of agents, at equilibrium, leads to desirable outcomes.
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Design of auctions B
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Designing negotiation protocols %‘g

Design of college admission systems
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The Rules of the Game Matter

frequency tender

15 Feb 2018

Il Bangladesh

The Bangladeshi government has raised a total of BDT52.89 billion (USD1.68 billion) from its 4G spectrum
auction, far below the expected BDT110 billion figure, with less than 30% of the 46.4MHz of spectrum put up for

sale bought in the tender, The Daily Star writes. Shahjahan Mahmood, chairman of the BTRC, said the regulator
was ‘not happy’ with the results of the auction, adding that the operators will have another opportunity to acquire
spectrum at the same price within the next six months.

Market leader GrameenPhone will pay USD408 billion for 5SMHz in the 1800MHz band, in addition to a fee to
convert its current holdings in the 900MHz and 1800MHz bands so as to make it technology neutral. Banglalink
was awarded 2x5.6MHz in the 1800MHz band and 5MHz of paired spectrum in the 2100MHz band for a total fee
USD308.6 million (excluding VAT), while it will pay a further USD35 million to convert its existing spectrum

"Bangladesh raises USD1.7bn from LTE
frequency tender." 15 Feb. 2018, https:/
www.telegeography.com/products/comm
supdate/articles/..
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15 Feb 201
Bl Bangla
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convert its ¢
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frequency tenc
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Airwaves in the 2,300 megahertz band sold out as telecom operators spent to

6 angladesh raises USD1.7bn from LTE

. ¥ L [ |}
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increase their 4G mobile broadband services. Photo: Mint

Spectrum auction ends, govt makes
Rs65,789 crore, misses target

4 min read . Updated: 07 Oct 2016, 10:08 AM IST

Upasana Jain

Proceeds from spectrum auction a fraction of the Rs5.63 trillion of

airwaves on offer;

no bids were received for 700 MHz, 900 Mhz bands

"Spectrum auction ends, govt makes
Rs65,789 crore, misses target.”

07 Oct. 2016, https://www.livemint.com/
Industry/xt5r4Zs5RmzjdwulLUdwJMI/..
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Ghana

«/ITN Ghana poised to snap up
unallocated 800MHz 4G spectrum

5 Apr 2019

== Ghana

Mobile network operator (MNO) MTN Ghana is lining up to purchase the two remaining 2x5MHz blocks of

spectrum lots in the 800MHz band that were left unallocated after Vodafone Ghana acquired its own block of
2x5MHz for USD30 million last December, Adom News reports. ‘MTN intends to acquire this remaining spectrum
to enable it to continue to give its customers an increasingly better experience on the network,” MTN Corporate
Services Executive Robert Kuzoe confirmed to Adom News in response to a questionnaire.

The MNO was precluded from the National Communications Authority (NCA’s) auction of three separate 2x5MHz

spectrum lots in the 800MHz band at the end of last year, on the grounds that it had already acquired a 2x10MHz

lot in the same band back in December 2015. While the NCA confirmed at the end of the 2018 spectrum auction
hat ‘two companies submitted applications, with Vodafone emerging as the only successful applicant,” the

"MTN Ghana poised to snap up
unallocated 800MHz 4G spectrum.”

05 April. 2019, https://www.telegeography.
com/products/commsupdate/..

38



Empirical Mechanism Design

The space of all possible mechanisms is too vast!

39 /68



Empirical Mechanism Design

The space of all possible mechanisms is too vast!

We focus on optimizing the parameters of an existing mechanism.

39 /68



Empirical Mechanism Design

The space of all possible mechanisms is too vast!
We focus on optimizing the parameters of an existing mechanism.

How should a mechanism designer set parameters of a mechanism,
given access only to data (or to a simulator capable of generating

data) about the game under different choices of parameters?

39 /68



Empirical Mechanism Design

The space of all possible mechanisms is too vast!
We focus on optimizing the parameters of an existing mechanism.

How should a mechanism designer set parameters of a mechanism,
given access only to data (or to a simulator capable of generating

data) about the game under different choices of parameters?

e.g., How should an auctioneer set the reserve prices of an auction
given access only to auction log data under different choices of

reserve prices?
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Empirical Mechanism Design - Schematic

Parameter search O .........

— A set © describes all
possible worlds (games)
— 0 in © is a“mechanism”

Equilibria estimation ‘ ....................................... e T

— Multiple players in each world

— Find an equilibria with
chosen 6

— The designer measures an
objective at equilibrium
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Fix some parametrizable mechanism, (e.g., a first-price auction).
® is the space of the mechanism's parameters (e.g., reserve prices)
0 € O is a choice of parameters (e.g., a reserve price of $10)

['y= <P, S, uy( - )> is a @-simulation-based game.

[ 0 0 0

0
IN\_>{S,= S [1.s= [..s= [
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Empirical Mechanism Design - Problem Statement

f(s;T ) is the designer's objective function (e.g., revenue) evaluated at
porofile s in game I'y, where f(5;T)) € R
E(I'y) is the set of equilibria of #-simulation-based game I,

Si f e th " libri . Worst-case, could
ince (often) it is the case that equilioria are not unique also define average-

(|ETy)| > 1), define: or best-case.

F(0;T'g) = min f(5;1)
seET )

The mechanism designer's problem is to find 6* such that:

0* € argmax F(0;1 )
0e®
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Solution Concepts

Solving the mechanism designer problem requires computing E(I'y),

the set of equilibria of a 8-simulation-based game, I',,.

But, computing Nash equilibria (even just one) is intractable, but

sometimes feasible for small games (recall Gambit).

Consequently, we explore alternative solution concepts.

Challenge: find a solution concept that is approximable and tractable.
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Strongly Connected Components Approximation Result

Theorem: (Recall-Precision)
It G4 is an e-uniform approximation of game Gy, then
Every SCC of Gy is a 2e-SCC of G
Every 2e-SCC of Gy is a 4e-SCC of G;

(e-SCC of a game allows for e-edges of the better-response graph)
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Theorem: (Recall-Precision)
It G4 is an e-uniform approximation of game Gy, then
Every SCC of Gy is a 2e-SCC of G
Every 2e-SCC of Gy is a 4e-SCC of G;

(e-SCC of a game allows for e-edges of the better-response graph)

Solution Concept Approximable? Tractable? Existence?
Mixed Nash | v X  Always
""""""" PureNash ¢ ¢ Somefimes
""""""""""" snk X v Aways
""""""""""" scc v v . Aways
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Black-Box Optimization

In case the design space is finite (| @ | < 00), we derive an algorithm that
provably learns approximately optimal mechanism's parameters.
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We observe F (0;I'y) with PAC noise L

The best Gaussian
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Kullback-Leibler divergence) of
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[0.1,0.6] where F ranges over
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Our Bayesian optimization search algorithms for EMD uses either the fitted
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Electronic Advertisement Auctions

Quarterly internet advertising revenue growth trends
1997-2019 ($ billions)

Q2 2019
$2998
$30
$25
$20
$15
S130M
$5
T
r-
g$888

Source: |IAB/PwC Intemet Ad Revenue Report, HY 2019
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Electronic Advertisement Exchanges

At the heart of electronic advertisement are ad-exchanges:
centralized locations that match supply to demand, typically

though some kind of auction.

Advertisers might have different objectives, e.g., to immediately

convert clicks into purchases, or to maintain brand awareness.

We focus on brand-awareness advertisement where advertisers
need to reach a certain number of potential customers, from

certain demographics, for a fixed (pre-determined) budget
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Electronic Advertisement Exchanges - Schematic

Advertisers

Advertisement !
Campaign

Opportunity \_

Advertlsement
Campaign

. > (Ad Exchange\/{
, ‘ Advertisement l I
& Campaign
Impression Y
\ &(

Maximize revenue

through reserve prices
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Electronic Advertisement Exchanges - Model

Stage 1: the ad exchange announces ¥ € R”, where

<1y -e Iy > € Olis such that r; is the reserve price for the jt

demographic or market segment.

Stage 2: all agents submit their bids (produced by heuristic

strategies we outline in the next slide).

Stage 3: some fixed number of impression opportunities arrive,

where the demographic of each is drawn from some distribution.

Stage 4: for each impression opportunity, the auctioneer runs an

auction. Final allocation and payments are computed.

Input: 7, Output: ad exchange revenue (sum of all payments).
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We devised two heuristics for our experimental setup.

—_
r

Walrasian or (Competitive) Equilibrium, denote by WE

Approximating equilibria in

® Bidding based on an (approxima combinatorial markets, work

of interest in its own right,
(Areyan et al. AAMAS17)

Waterfall, denoted by WF

® Bidding based on simulating the ad exchange dynamics.
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Experimental Setup

Draw K = 500 impression opportunities distributed in 8 market

segments.

We experiment with N = 4 agents, each allowed to chose from

the two strategies mentioned before, i.e., S = {WE, WF}.

Design space is © = R2. Here, < r,...,rg > € O is such that r;is

the reserve price for the jth demographic or market segment.

The task then if to find an 8-dimensional vector of reserve prices

r* € O that maximizes the ad exchange revenue, at equilibrium.
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Experimental Results
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All code available at github.com/eareyan/emd-adx
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Summary Part 2

We contribute an end-to-end methodology for the optimization of

mechanisms' parameters.
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Summary Part 2

We contribute an end-to-end methodology for the optimization of

mechanisms' parameters.

In the case where the design space is finite, we derive a learning

algorithm to find approximately optimal mechanisms' parameters.

For more general cases, we propose Bayesian optimization (BO)

algorithms to guide the search for an optimal mechanism's parameter.

We empirically showed the effectiveness of our BO algorithms in a

styled but rich simulation of electronic advertisement exchanges.
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Part 3:

Proposed Work
-
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Proposed Work: Noisy Combinatorial Markets

B Combinatorial markets are markets with indivisible goods where

buyers have complex preterences over bundles of goods
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Proposed Work: Noisy Combinatorial Markets

B Combinatorial markets are markets with indivisible goods where

buyers have complex preterences over bundles of goods

B Usual assumption: buyers exactly know their values for bundles

® Value for bundles might depend on unobservable factors

® There might be too many goods, so heuristic or approximate

methods might be used to obtain value estimates

B Propose: extend our simu

computing competitive ec

ation-based game methodology to

uilibria in noisy combinatorial market

Preliminary Work:

Learning Competitive Equilibria in Noisy Combinatorial Markets.

Enrique Areyan Viqueira and Amy Greenwald.

2nd Games, Agents, and Incentives Workshop (GAIW@AAMAS 2020)
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Autonomous Negotiation Agents

B Automated negotiation: process by which self-interested,

artificial intelligent agents reach an agreement.
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Autonomous Negotiation Agents

B Automated negotiation: process by which self-interested,

artificial intelligent agents reach an agreement.

B Focus in supply chain management. Agents must:

® negotiate to buy raw materials

® schedule prod oducts

: Automated Negotiating Agents Competition
® neQOt'ate to se€ Supply Chain Management League

B Propose: build on our previous wdfk on automated negotiation

agents to participate in 2020's ANAC SCML competition.

B Currently: mentoring a group of undergraduate students to
participate in 2020's ANAC SCML competition.
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Timeline
S

Task Date

Noisy Combinatorial Markets Summer/Fall 2020
Autonomous Negotiation Agents Summer 2020
Thesis Writing Spring 2021
Thesis Defense May 2021
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Thank you for your attention!

Thesis Statement

Through modern statistical tools, sampling heuristics, and
optimization techniques, we find sample-efficient algorithms that
learn the approximate equilibria of simulation-based games
and use them to empirically design mechanisms.
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