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Thesis Statement 
Through modern statistical tools, sampling heuristics, and 

optimization techniques, we find sample-efficient algorithms that 
learn the approximate equilibria of simulation-based games  

and use them to empirically design mechanisms.

(Tentative) Thesis Statement
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Part 1: 
Learning Equilibria of Simulation-Based Games

Improved Algorithms for Learning Equilibria in Simulation-Based Games.  
Enrique Areyan Viqueira, Cyrus Cousins, Amy Greenwald.  

19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS20).

Learning Simulation-Based Games from Data.  
Enrique Areyan Viqueira, Amy Greenwald, Cyrus Cousins, Eli Upfal.  

18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS19).
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Simulation-Based Games

Game theory is the standard conceptual framework to analyze 
the interaction among strategic agents

At the heart of game theory is the notion of a Game - a 
mathematical object: players, actions, and utilities

Often, an analyst can specify a game description completely. But, 
there are games too complex to afford a complete description
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StarCraft: a real-time strategy game 

Hundreds of units and buildings, large strategy space 

Deepmind1 recently built the first AI to defeat a top player 

        Their parameterization of the game has an average of 

         legal actions at each step! 1026

Simulation-Based Games - Examples

[1] https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
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Simulation-Based Games - Pervasive in Real Life

As fun as StarCraft might be, think of it as a model for important, 

real-world applications such as: 

 

      Electronic advertisement (TAC AdX - https://sites.google.com/site/gameadx/) 

      Energy markets (Power TAC - https://powertac.org/) 

      Industrial supply chains (ANAC-SCML http://web.tuat.ac.jp/~katfuji/ANAC2019/#scm) 

     etc. 
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Simulation-Based Games - Characteristics

Games are too complex to exactly compute expected utilities 
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Simulation-Based Games - Characteristics

Games are too complex to exactly compute expected utilities 

Many sources of complexity, in the StarCraft example 

   different terrains, units, actions, etc.

Nevertheless, in simulation-based games, one can obtain 

samples of utilities by running a game simulator
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Simulation-Based Games - Mathematical Model
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Simulation-Based Games - Heuristics

Actions spaces are vast, so usually no optimal strategies are 

available. Instead, there are a few heuristics. 

12
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Plan for the rest of Part 1

High-level Goal: learn the equilibria of simulation-based games 

Formalize simulation-based games and their equilibria  

Learning algorithms and experimental results

13
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A Mathematical Model - Conditional and Expected Games

Let  be player 's utility when strategy profile  is playedup( ⃗s ) p ⃗s

16
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/ 68

A Mathematical Model - Conditional and Expected Games

Let  be player 's utility when strategy profile  is playedup( ⃗s ) p ⃗s

Model randomness by postulating a set of conditions , such 

that given , we obtain a utility function  

𝒳
x ∈ 𝒳 up( ⃗s; x)

16

, where  is agent's  strategy⃗s = (s1, s2, …, sn) si i



/ 68

A Mathematical Model - Conditional and Expected Games

Let  be player 's utility when strategy profile  is playedup( ⃗s ) p ⃗s

Model randomness by postulating a set of conditions , such 

that given , we obtain a utility function  

𝒳
x ∈ 𝒳 up( ⃗s; x)

Given a distribution  over condition set , we define the 

expected utility 

𝒟 𝒳
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Model randomness by postulating a set of conditions , such 

that given , we obtain a utility function  

𝒳
x ∈ 𝒳 up( ⃗s; x)

Given a distribution  over condition set , we define the 

expected utility 

𝒟 𝒳
ūp( ⃗s ) = 𝔼x∼𝒟[up( ⃗s; x)]

The expected game (the normal-form game with expected 

utilities) is then our model of a simulation-based game

16
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A Mathematical Model - Empirical Games

Recall that, in practice, we only observe samples of the utilities of 

simulation-based games
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A Mathematical Model - Empirical Games

Recall that, in practice, we only observe samples of the utilities of 

simulation-based games

Given  samples:  

The empirical utility is the average:  

m up( ⃗s; x1), up( ⃗s; x2), ⋯, up( ⃗s; xm)
̂up( ⃗s ) = 1

m ∑m
i=1 up( ⃗s; xi)

The empirical game  has empirical utilities for every player and 

strategy profile
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Goal

 

Learn, with provable guarantees, all the equilibria of expected 
games given access only to empirical games 

(Other valid and interesting goals:  

     + recover one equilibrium, e.g., by following best-response dynamics)

18
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Approximation Framework

Our fundamental tool: -uniform approximations (here ).     ϵ ε > 0
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Approximation Framework

For simulation-based games,  are complex objects. We 

can't reasonably hope to compute the expected game exactly

𝒳, and 𝒟

Even if we could approximate each  (say, up to ), would that 

destroy the equilibria?

ūp( ⃗s ) ε

Definition: a strategy profile  is an -equilibrium if players don't 

have incentive to deviate, up to , fixing other players' strategies

⃗s ε
ε
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Approximating Equilibria - First Result

Theorem: (Recall-Precision)
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Learning Equilibria 

How to learn the approximate equilibria  

of a simulation-based game from sample data? 

How to learn an -uniform approximation of  

an expected game from sample data? 

ϵ

22

Original  
Goal

Mathematically 
Precise Goal
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Learning Algorithms - A Baseline

We present two Probably Approximate Correct (PAC) algorithm 

to learn empirical games

PAC algorithm: given , learn some model (games!) up 

to error at most  and with probability at least 

ε, δ > 0
ε 1 − δ

The first algorithm is a baseline that uses Hoeffding's Inequality 
to estimate all utilities of a simulation-based game

Tuyls, K. et al.  
Bounds and dynamics 

for empirical game 
theoretic analysis, 2020.
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Learning Algorithms - Progressive Sampling with Pruning

Recall our goal: learn equilibria. Not all utilities we learn are 
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Recall our goal: learn equilibria. Not all utilities we learn are 

relevant to get at equilibria. For example,

3, 3 0, 5

5, 0 2, 2

We don't need to learn "3" exactly, we just 
need to learn that "5">"3", up to errors.

Idea: take a few samples first, then take more samples of only those 

profiles that can't be refuted as part of an equilibrium

What value of  is enough to 
estimate the equilibrium of 

this game?

ε

ε < 1

Srow
1
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2

Scol
1 Scol

2
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While some target accuracy  is not reached ( ) or  

        we run out of sampling budget or  

        there are no more active 

ϵ ϵ < ϵt

p, ⃗s

• Sample all active , up to current error p, ⃗s ϵt

• For all active  ⃗s

• if  can be refuted as part of an equilibrium,  

then remove it from the active set

⃗s

• Decrease the target error ϵt+1 ← ϵt − constant
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Experimental Setup

We use GAMUT (gamut.stanford.edu) to generate games 

We use Gambit (www.gambit-project.org) for equilibria 

computation 

We developed a python library (github.com/eareyan/pysegta) 

that implements our learning algorithms and interfaces with both 

GAMUT and Gambit.

30

http://gamut.stanford.edu/
http://www.gambit-project.org/
http://www.github.com/eareyan/pysegta
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Summary Part 1
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Summary Part 1

We contribute an end-to-end methodology for the analysis of 

simulation-based games

We prove tight bounds on the set of approximate equilibria of 

games learned from data

We present and empirically evaluate a learning algorithm that 

exploits strategic structure of games to save on samples

We contribute an open-source library that implements our 

learning algorithms www.github.com/eareyan/pysegta 
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Part 2: 
Empirical Mechanism Design

Empirical Mechanism Design: Designing Mechanisms from Data. 
Enrique Areyan Viqueira, Cyrus Cousins, Yasser Mohammad, Amy Greenwald. 

Uncertainty in Artificial Intelligence (UAI19).

On Approximate Welfare-and Revenue-Maximizing Equilibria for Size-Interchangeable Bidders.  
Enrique Areyan Viqueira, Amy Greenwald, Victor Naroditskiy. 

16th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS17).
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Mechanism Design

Mechanism design: designing games so that the ensuing behavior 

of agents, at equilibrium, leads to desirable outcomes. 

Examples abound:

Design of auctions

Designing negotiation protocols 

Design of college admission systems

etc.

Image credits: http://clipart-library.com/37

http://clipart-library.com/
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Bangladesh

The Rules of the Game Matter
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Empirical Mechanism Design

The space of all possible mechanisms is too vast!

We focus on optimizing the parameters of an existing mechanism.

How should a mechanism designer set parameters of a mechanism, 

given access only to data (or to a simulator capable of generating 

data) about the game under different choices of parameters?

e.g., How should an auctioneer set the reserve prices of an auction 

given access only to auction log data under different choices of 
reserve prices?
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Empirical Mechanism Design - Schematic

Enrique Areyan Viqueira      .      October 20, 2019      .      INFORMS—Seattle, Washington         Designing Mechanisms from Data 

Parameterized mechanism design (déjà vu)

— A set ч describes all
possible worlds (games)

— ѡ�in ч�is a “mechanism”

— Multiple players in each world
— Find an equilibria with 

choosen ѡ
— The designer measures an  

objective at equilibrium

Parameter search

Equilibria estimation

ʡ
Game 2 (ѡ2)

Game n (ѡn)

Game 1 (ѡ1)

ѡ��H�J��UHYHUVH�SULFHV��IRU�LQWHUQHW�DG�DXFWLRQV

7 
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Empirical Mechanism Design - Notation

Fix some parametrizable mechanism, (e.g., a first-price auction).
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 is the designer's objective function (e.g., revenue) evaluated at 
profile  in game , where 
f( ⃗s; Γθ)

⃗s Γθ f( ⃗s; Γθ) ∈ ℝ

42



/ 68

Empirical Mechanism Design - Problem Statement

 is the designer's objective function (e.g., revenue) evaluated at 
profile  in game , where 
f( ⃗s; Γθ)

⃗s Γθ f( ⃗s; Γθ) ∈ ℝ

 is the set of equilibria of -simulation-based game .E(Γθ) θ Γθ

42



/ 68

Empirical Mechanism Design - Problem Statement

 is the designer's objective function (e.g., revenue) evaluated at 
profile  in game , where 
f( ⃗s; Γθ)

⃗s Γθ f( ⃗s; Γθ) ∈ ℝ

 is the set of equilibria of -simulation-based game .E(Γθ) θ Γθ

Since (often) it is the case that equilibria are not unique   
( ), define:|E(Γθ) | > 1

42



/ 68

Empirical Mechanism Design - Problem Statement

 is the designer's objective function (e.g., revenue) evaluated at 
profile  in game , where 
f( ⃗s; Γθ)

⃗s Γθ f( ⃗s; Γθ) ∈ ℝ

 is the set of equilibria of -simulation-based game .E(Γθ) θ Γθ

Since (often) it is the case that equilibria are not unique   
( ), define:|E(Γθ) | > 1

F(θ; Γθ) = min
⃗s∈E(Γθ)

f( ⃗s; Γθ)

42



/ 68

Empirical Mechanism Design - Problem Statement

 is the designer's objective function (e.g., revenue) evaluated at 
profile  in game , where 
f( ⃗s; Γθ)

⃗s Γθ f( ⃗s; Γθ) ∈ ℝ

 is the set of equilibria of -simulation-based game .E(Γθ) θ Γθ

Since (often) it is the case that equilibria are not unique   
( ), define:|E(Γθ) | > 1

F(θ; Γθ) = min
⃗s∈E(Γθ)

f( ⃗s; Γθ)

Worst-case, could 
also define average- 

or best-case.

42



/ 68

Empirical Mechanism Design - Problem Statement

 is the designer's objective function (e.g., revenue) evaluated at 
profile  in game , where 
f( ⃗s; Γθ)

⃗s Γθ f( ⃗s; Γθ) ∈ ℝ

 is the set of equilibria of -simulation-based game .E(Γθ) θ Γθ

Since (often) it is the case that equilibria are not unique   
( ), define:|E(Γθ) | > 1

F(θ; Γθ) = min
⃗s∈E(Γθ)

f( ⃗s; Γθ)

θ* ∈ arg max
θ∈Θ

F(θ; Γθ)

The mechanism designer's problem is to find  such that:θ*

Worst-case, could 
also define average- 

or best-case.

42



/ 68

Empirical Mechanism Design 

Solution Concepts 

Black-Box Optimization 

Experiments - Ad Auctions

The "Design" Plan (a.k.a. Outline Part 2)

43



/ 68

Empirical Mechanism Design 

Solution Concepts 

Black-Box Optimization 

Experiments - Ad Auctions

The "Design" Plan (a.k.a. Outline Part 2)

44



/ 68

Solution Concepts

Solving the mechanism designer problem requires computing , 

the set of equilibria of a -simulation-based game, .

E(Γθ)
θ Γθ

45



/ 68

Solution Concepts

Solving the mechanism designer problem requires computing , 

the set of equilibria of a -simulation-based game, .

E(Γθ)
θ Γθ

But, computing Nash equilibria (even just one) is intractable, but 

sometimes feasible for small games (recall Gambit).

45



/ 68

Solution Concepts

Solving the mechanism designer problem requires computing , 

the set of equilibria of a -simulation-based game, .

E(Γθ)
θ Γθ

But, computing Nash equilibria (even just one) is intractable, but 

sometimes feasible for small games (recall Gambit).

Consequently, we explore alternative solution concepts.  

Challenge: find a solution concept that is approximable and tractable.
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Strongly Connected Components Approximation Result

Theorem: (Recall-Precision) 

If G1 is an -uniform approximation of game G2, then 

Every SCC of G1 is a -SCC of G2 

Every -SCC of G2 is a -SCC of G1 

( -SCC of a game allows for -edges of the better-response graph)

ϵ

2ε

2ε 4ε

ε ε
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Theorem: (Recall-Precision) 

If G1 is an -uniform approximation of game G2, then 

Every SCC of G1 is a -SCC of G2 

Every -SCC of G2 is a -SCC of G1 

( -SCC of a game allows for -edges of the better-response graph)

ϵ

2ε

2ε 4ε

ε ε

Solution Concept Approximable? Tractable? Existence?
Mixed Nash ✔ ❌ Always
Pure Nash ✔ ✔ Sometimes

Sink ❌ ✔ Always
SCC ✔ ✔ Always
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Black-Box Optimization

49

In case the design space is finite ( ), we derive an algorithm that 
provably learns approximately optimal mechanism's parameters. 

|Θ | < ∞
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The best Gaussian 
approximation (minimum 
Kullback-Leibler divergence) of 
a 90% confidence interval on 
[0.1,0.6] where F ranges over 
[0,1]. 


49

θ Solve Equilibria Measure ̂f ̂F(θ; Γθ)
Blackbox

μ*μ



/ 68

Empirical Mechanism Design 

Solution Concepts 

Black-Box Optimization 

Experiments - Ad Auctions

The "Design" Plan (a.k.a. Outline Part 2)

50



/ 68

The "Design" Plan (a.k.a. Outline Part 2)

Empirical Mechanism Design 

Solution Concepts 

Black-Box Optimization 

Experiments - Ad Auctions

51



/ 68

Electronic Advertisement Auctions

52



/ 68

Electronic Advertisement Auctions

Image Credit: webcapitaltop.com/servicios/campanas-display53
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though some kind of auction.
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At the heart of electronic advertisement are ad-exchanges: 

centralized locations that match supply to demand, typically 

though some kind of auction.

Advertisers might have different objectives, e.g., to immediately 

convert clicks into purchases, or to maintain brand awareness. 

We focus on brand-awareness advertisement where advertisers 

need to reach a certain number of potential customers, from 

certain demographics, for a fixed (pre-determined) budget
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Electronic Advertisement Exchanges - Model

Stage 1: the ad exchange announces , where

 is such that   is the reserve price for the th 

demographic or market segment.
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< r1, …, rm > ∈ Θ rj j
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Electronic Advertisement Exchanges - Model

Stage 1: the ad exchange announces , where

 is such that   is the reserve price for the th 

demographic or market segment.

⃗r ∈ ℝm
+

< r1, …, rm > ∈ Θ rj j

Stage 2: all agents submit their bids (produced by heuristic 

strategies we outline in the next slide). 

Stage 3: some fixed number of impression opportunities arrive, 

where the demographic of each is drawn from some distribution.

Stage 4: for each impression opportunity, the auctioneer runs an 

auction. Final allocation and payments are computed. 

Input: , Output: ad exchange revenue (sum of all payments).⃗r
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Electronic Advertisement Exchanges - Heuristics

We devised two heuristics for our experimental setup. 

 Walrasian or (Competitive) Equilibrium, denote by WE

Bidding based on an (approximate) competitive equilibrium. 

 Waterfall, denoted by WF

Bidding based on simulating the ad exchange dynamics.

Approximating equilibria in 
combinatorial markets, work 

of interest in its own right, 
(Areyan et al. AAMAS17)

⃗r ⃗r

⃗r

⃗r
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Experimental Setup

Draw  impression opportunities distributed in 8 market 

segments.

K = 500

We experiment with  agents, each allowed to chose from 

the two strategies mentioned before, i.e., S = {WE, WF}. 

N = 4

Design space is . Here,  is such that   is 

the reserve price for the th demographic or market segment.

Θ = ℝ8 < r1, …, r8 > ∈ Θ rj

j

The task then if to find an 8-dimensional vector of reserve prices 

 that maximizes the ad exchange revenue, at equilibrium.⃗r* ∈ Θ
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Experimental Results

Enrique Areyan Viqueira      .      October 20, 2019      .      INFORMS—Seattle, Washington         Designing Mechanisms from Data 

Results

11
All code available at github.com/eareyan/emd-adx

δ = 0.1

60

http://github.com/eareyan/emd-adx


/ 68

Experimental Results

Enrique Areyan Viqueira      .      October 20, 2019      .      INFORMS—Seattle, Washington         Designing Mechanisms from Data 

Results

11
All code available at github.com/eareyan/emd-adx

Each point of the plot involves learning a simulation-
based game, then solve for its equilibria, then compute F

δ = 0.1
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Summary Part 2

We contribute an end-to-end methodology for the optimization of 

mechanisms' parameters.

In the case where the design space is finite, we derive a learning 

algorithm to find approximately optimal mechanisms' parameters.

For more general cases, we propose Bayesian optimization (BO) 

algorithms to guide the search for an optimal mechanism's parameter.

We empirically showed the effectiveness of our BO algorithms in a 

styled but rich simulation of electronic advertisement exchanges.
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Part 3: 
Proposed Work
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Preliminary Work:  
Learning Competitive Equilibria in Noisy Combinatorial Markets. 


Enrique Areyan Viqueira and Amy Greenwald.

 2nd Games, Agents, and Incentives Workshop (GAIW@AAMAS 2020)

Combinatorial markets are markets with indivisible goods where 

buyers have complex preferences over bundles of goods

Usual assumption: buyers exactly know their values for bundles

Value for bundles might depend on unobservable factors

There might be too many goods, so heuristic or approximate 
methods might be used to obtain value estimates

Propose: extend our simulation-based game methodology to 

computing competitive equilibria in noisy combinatorial market

Proposed Work: Noisy Combinatorial Markets
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Automated negotiation: process by which self-interested, 

artificial intelligent agents reach an agreement. 

Focus in supply chain management. Agents must:

negotiate to buy raw materials
schedule production to turn raw material into finished products
negotiate to sell finished products 

Propose: build on our previous work on automated negotiation 

agents to participate in 2020's ANAC SCML competition.

Currently: mentoring a group of undergraduate students to 

participate in 2020's ANAC SCML competition. 

Autonomous Negotiation Agents

66
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Timeline
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Thank you for your attention!

68

Thesis Statement 
Through modern statistical tools, sampling heuristics, and 

optimization techniques, we find sample-efficient algorithms that 
learn the approximate equilibria of simulation-based games  

and use them to empirically design mechanisms.


