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Part 1:
Learning Equilibria of Simulation-Based Games

Improved Algorithms for Learning Equilibria in Simulation-Based Games.
Enrigue Areyan Viqueira, Cyrus Cousins, Amy Greenwald.
19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS20).

Learning Simulation-Based Games from Data.
Enrique Areyan Viqueira, Amy Greenwald, Cyrus Cousins, Eli Upfal.
18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS19).
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Simulation-Based Games

Game theory is the standard conceptual framework to analyze
the interaction among strategic agents

At the heart of game theory is the notion of a Game - a
mathematical object: players, actions, and utilities

Often, an analyst can specify a game description completely. But,
there are games too complex to afford a complete description
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Simulation-Based Games - Examples

l

NTARCRAFT

m StarCraft: a real-time strategy game

® Hundreds of units and buildings, large strategy space

sssssssssssss

®m Deepmind! recently built the first Al to defeat a top player

Their parameterization of the game has an average of

10%° legal actions at each step!

[1] https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
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Simulation-Based Games - Pervasive in Real Life

As fun as StarCraft might be, think of it as a toy model for

important, real-world applications of multi-agent systems such as:

Electronic advertisement (TAC AdX - https://sites.google.com/site/gameadx/)

Energy markets (Power TAC - https://powertac.org/)

Industrial supply chains (ANAC-SCML http://web.tuat.ac.jp/~katfuji/ANAC2019/#scm)

etc.
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Simulation-Based Games - Characteristics

W Games are too complex to exactly compute expected utilities
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Simulation-Based Games - Characteristics

Games are too complex to exactly compute expected utilities

Many sources of complexity, in the StarCraft example

different terrains, units, actions, etc.

Nevertheless, in simulation-based games, one can obtain

samples of utilities by running a game simulator
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Simulation-Based Games - Mathematical Model
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Simulation-based game
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Simulation-Based Games - Mathematical Model
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Simulation-Based Games - Heuristics

® Actions spaces are vast, so usually no optimal strategies are

available. Instead, there are a few heuristics.

w—){s1= 1 S,= Igl,%: 1. 19,= Igl}
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Plan for the rest of Part 1

® High-level Goal: learn the equilibria of simulation-based games
B Formalize simulation-based games and their equilibria

B Learning algorithms and experimental results
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A Mathematical Model - Conditional and Expected Games

s = (51,5, ..., 5,), Where s. is agent's i strategy

W Let u,(s) be player p's utility when strategy profile s is played
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A Mathematical Model - Conditional and Expected Games

..., $,), where s, is agent's i strategy

W Letu,(s) be player p's utility when strategy profile s is played

¥ Model randomness by postulating a set of conditions ', such

that given x € ', we obtain a utility function u,(s; x)

W Given a distribution & over condition set 2, we define the

expected utility it (5) = E,_g[u,(s;x)]

W The expected game (the normal-form game with expected

utilities) is then our model of a simulation-based game
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A Mathematical Model - Empirical Games

W Recall that, in practice, we only observe samples of the utilities of

simulation-based games
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A Mathematical Model - Empirical Games

Recall that, in practice, we only observe samples of the utilities of

simulation-based games

Given m samples: up(f; X1), up(§; X)), up(f; X,)

o o ofe . DA N i m -
The empirical utility is the average: it,(s) = — Zi=1 U, (S5 X;)

The empirical game has empirical utilities for every player and

strategy profile
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Goal

Learn, with provable guarantees, all the equilibria of expected

games given access only to empirical games

(Other valid and interesting goals:

+ recover one equilibrium, e.g., by following best-response dynamics)
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Approximation Framework
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Approximation Framework

Our mathematical tool: e-uniform approximations (here € > 0).

A game G is an e-uniform approximation of game Gy it

Vp, s luy(5) —uy(5)| < e

Gl Slcol Szcol G2 Slcol Szcol
Srow 1, -1 3.0 Srow 1,1 | -3,0+¢
7 | 0,3 | 2,2 7| 0,3ee | 2472
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Approximation Framework

Our mathematical tool: e-uniform approximations (here € > 0).

A game G is an e-uniform approximation of game Gy it
Vp, 5t luy(5) —uy(5)| < e

G, is e-close to G,

G col col col col
1 Si S5 Gy 51 5

Syov 1, -1 3,0 Srov 1,-1 | 3,069

Syow 0,-3 2, -2 Syow 0, - A@r
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Approximation Framework

W For simulation-based games, &', and & are complex objects. We

can't reasonably hope to compute the expected game exactly
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Approximation Framework

For simulation-based games, X', and & are complex objects. We

can't reasonably hope to compute the expected game exactly

Even if we could approximate each ii,(s) (say, up to &), would that

destroy the equilibria?

Definition: a strategy profile s is an e-equilibrium if players don't

have incentive to deviate, up to ¢, fixing other players' strategies
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Approximating Equilibria - First Result

Theorem: (Recall-Precision)
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Approximating Equilibria - First Result

Tuyls, K. et al.
Theorem: (Recall-Precision) Bounds and dynamics

for empirical game
theoretic analysis, 2020.

W |f G is an e-uniform approximation of game Gy, then
® Recall: Every equilibrium of Gy is a 2e-equilibrium of Gy

® Precision: Every 2e-equilibrium of Gy is a 4e-equilibrium of G

19 /80



Approximating Equilibria - First Result

Tuyls, K. et al.
Theorem: (Recall-Precision) Bounds and dynamics

for empirical game
theoretic analysis, 2020.

It G is an e-uniform approximation of game Gy, then

Recall: Every equilibrium of Gy is a 2e-equilibrium of G

Precision: Every 2e-equilibrium of Gy is a 4e-equilibrium of G;

With probability at least 1-6

N( ) & N, (estimated game) = N, (

true positives

® false positives

estimated game
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Learning Equilibria

How to learn the approximate equilibria

Original

of a simulation-based game from sample data? Goal

How to learn an e-uniform approximation of Mathematically

Precise Goal

an expected game from sample data?
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Learning Algorithms - A Baseline

willing to tolerate? the estimates to be?
Error tolerance & Failure tolerance 6

ct (PAC) algorithm

m We present two Probably Approximate Cc

to learn empirical\games

® PAC algorithm: given g,6 > 0, learn some model (games!) up

to error at most € and with probability at least 1 — 6

W The first algorithm is a baseline that uses Hoeffding's Inequality

to estimate all utilities of a simulation-based game

Tuyls, K. et al.
Bounds and dynamics for

empirical game theoretic
analysis, 2020.
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Learning Algorithms - Progressive Sampling with Pruning

W Recall our goal: learn equilibria. Not all utilities we learn are
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Learning Algorithms - Progressive Sampling with Pruning

Recall our goal: learn equilibria. Not all utilities we learn are

relevant to get at equilibria. For example,

Slcol Szcol
Srow 3 3 0,5 What value of ¢ is enough to
estimate the equilibrium of
this game?
5,7 5,0 2,2
e <1

|dea: take a few samples first, then take more samples of only those

profiles that can't be refuted as part of an equilibrium
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Algorithm: Progressive Sampling With Pruning
Initially, all p, s are active. Initial error ¢, is "big".

While some target accuracy € is not reached (e < €,) or

we run out of sampling budget or

there are no more active p, s
« Sample all active p, s, up to current error ¢,
 Forall active s

* if 5 can be refuted as part of an equilibrium,

then remove it from the active set

» Decrease the target error ¢,, ;| < €, — constant <=
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Experimental Setup

We use GAMUT (gamut.stanford.edu) to generate games

We use Gambit (www.gambit-project.org) for equilibria

computation

We developed a python library (github.com/eareyan/pysegta)

that implements our learning algorithms and interfaces with both
GAMUT and Gambit.
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Experimental Results - Summary
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Experimental Results - Summary

Pruning is highly data efficient over a wide range of games,

specifically, over 10 different classes of games

Efficiency is due to the algorithm exploiting the strategic structure

of games without knowing a priori what this structure is!
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Experimental Results - Summary

€ <0.125 £€<0.25 <05 e<1.0
Bound Hoeffding Emp. Bennett Hoeffding Emp. Bennett Hoeffding Emp. Bennett Hoeffding Emp. Bennett
Game/Algorithm GS; PSP; epsp GS; PSP; epsp | GS;PSP;epsp  GS; PSP; epsp | GS; PSP;epsp  GS; PSP; epsp | GS; PSP; epsp  GS; PSP; epsp
Congestion Games (5 facilities) | 3,051; 1,654; 0.08 3,051; 1,449; 0.00 | 762; 464; 0.17 762; 364; 0.01 | 190; 146; 0.34 190; 93; 0.01 47, 58; 0.70 47, 25; 0.04
Zero-Sum Games (30 strategies) | 2,841; 1,691; 0.08 2,841; 1,383; 0.00 | 710; 502; 0.17 710; 349; 0.01 | 177; 166; 0.35 177, 90; 0.01 44; 62; 0.71 44, 25; 0.04
Random Games (30 strategies) | 2,841; 1,666; 0.08 2,841; 1,375; 0.00 | 710; 491; 0.17 710; 347; 0.01 | 177; 159; 0.35 177; 90; 0.01 44; 58; 0.71 44, 25; 0.04
Congestion Games (4 facilities) 622; 492; 0.09 622; 438; 0.00 | 156; 138;0.17 156; 110; 0.01 39; 41; 0.35 39; 28; 0.01 10; 15; 0.71 10; 8; 0.04
Zero-Sum Games (20 strategies) 1,171; 829; 0.09 1,171; 708; 0.00 | 293; 240; 0.17 293; 179; 0.01 73;77; 0.35 73; 46; 0.01 18; 28; 0.71 18; 13; 0.04
Random Games (20 strategies) 1,171; 809; 0.09 1,171; 698; 0.00 | 293; 232; 0.17 293; 176; 0.01 73;73;0.35 73; 45; 0.01 18; 25; 0.71 18; 12; 0.04
Congestion Games (3 facilities) 114; 145; 0.09 114; 135; 0.00 29; 40, 0.18 29; 34; 0.01 7;12; 0.36 7;9;0.02 2;4;0.73 2;2;0.05
Zero-Sum Games (10 strategies) 254; 268; 0.09 254; 242; 0.00 63; 73; 0.18 63;61; 0.01 16; 22;0.36 16; 15;0.02 4;7,0.73 4; 4; 0.05
Random Games (10 strategies) 254; 254, 0.09 254; 233; 0.00 63; 69; 0.18 63; 59; 0.01 16; 21;0.36 16; 15; 0.02 4;7;0.72 4; 4, 0.05
Congestion Games (2 facilities) 17; 37; 0.09 17; 37; 0.00 4;10; 0.19 4;9; 0.01 1; 3; 0.38 1; 2; 0.02 1; 1;0.76 1; 1; 0.05
Zero-Sum Games (5 strategies) 54; 94; 0.09 54; 89; 0.00 13; 25; 0.18 13; 22; 0.01 3;,7,0.37 3; 6;0.02 1; 2; 0.75 1; 1; 0.05
Random Games (5 strategies) 54; 83; 0.09 54; 90; 0.00 13; 22;0.18 13; 20; 0.01 3; 6; 0.37 3;5;0.02 1;2;0.74 1; 1; 0.05

Table 1: PSP’s sample efficiency. Numbers of samples are reported in tens of thousands. The values in bold are smaller than
their counterparts; as ¢ is fixed, they indicate the more sample efficient algorithms.
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We contribute an end-to-end methodology for the analysis of

simulation-based games

We prove tight bounds on the set of approximate equilibria of

games learned from data

We present and empirically evaluate a learning algorithm that

exploits strategic structure of games to save on samples

We contribute an open-source library that implements our

learning algorithms www.github.com/eareyan/pysegta
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Part 2:

Learning Competitive Equilibria in Combinatorial Markets
-

Learning Competitive Equilibria in Noisy Combinatorial Markets
Enrique Areyan Viqueira, Cyrus Cousins, Amy Greenwald.
20th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS21).

33 /80



Outline - Combinatorial Markets

® Model and Examples
¥ Noisy Combinatorial Markets

B Revisiting Pruning and Experiments

34 /80



Combinatorial Markets

B Markets with indivisible goods

35 /80



Combinatorial Markets

m Markets with indivisible goods

B Buyers can have complex preferences over bundles of goods

35 /80



Combinatorial Markets

m Markets with indivisible goods

B Buyers can have complex preferences over bundles of goods

m They can be very economically efficient:

35 /80



Combinatorial Markets

Markets with indivisible goods
Buyers can have complex preferences over bundles of goods
They can be very economically efficient:

Flexibility to report complex preferences over a wide variety of

outcomes might uncover value otherwise hidden
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Model, Competitive Equilibrium

An outcome (&, p) is a &€=-competitive equilibrium (CE) if
All buyers are happy: S; € argmaxv(S) — X p; —&

SCG jeG

At prices p, the seller maximizes its revenue over all allocations
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Assumption: buyers exactly know their values for all bundles
However, this may not always be the case. Why?

Value for bundle might depend on unobservable factors, e.g.,

whether an event occurs or not

There might be too many goods, so heuristic or approximate

methods might be used to obtain value estimates
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Noisy Combinatorial Markets (cont.)
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Noisy Combinatorial Markets (cont.)

v/(blue region) = ?

Unobservable factors:
Future demand,
Future competitors,
Political factors,
etc.
v/(blue region) = $1M + ¢
With 95% certainty

Our goal: to learn approximate competitive equilibria given access to value estimates
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Revisiting Pruning

In the worst case for the blue allocation:
W* =11 - 2¢
In the best case when Anna gets 2.
Wi =2+2¢

Blue Allocation’s Welfare
W*=(10xe)+ (1 x£¢)

Exploiting first-welfare theorem of economics, we prove:
©

If £ is small enough (¢ < 9/4), there is no way that w Anna gets ‘

Anna gets just ‘ at any competitive equilibrium.
gets | y P 9 W= (1xe)+(1l +e)

U

Conclusion: we can safely stop learning Anna'’s value

for @ and instead focus learning effort elsewhere.
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Hard computational problem

W Learn a market up to ¢ (initially big epsilon¥’cheap” to learn)
® Solve for welfare-maximizing allocation W* (blue allocation!)

W For each possible (buyer, bundle) pair, (i, S) (e.g., Anna, ‘)

: Hard computational problem
® Assume i gets §

® Solve welfare-max. allocation Wf(l. %) for remaining buyers, items

o tW*>v(S)+ Wf(l. 5 + f(€), then stop learning value v,(S)

We show it is enough to use an

upper bound to retain guarantees
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Experimental Setup - Local-Synergy Value Model (LSVM)

T. Scheffel et al.

Table 1 Local-SVM with the preferred items Q and K of two regional bidder. All their positive valued
items are shaded
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T. Scheffel et al.

Table 1 Local-SVM with the preferred items Q and K of two regional bidder. All their positive valued
items are shaded

A[B[C|DJ] E[F AB|[C|[DJ]E[F
ClH|TI|J] K |L G|l H]|T|J]|K|L
M| N|O|P|QF|R M|N|O|P| Q |R

Five regional bidders and one national bidder

Large Markets! National bidder alone has value for 2!® bundles
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Experimental Results - Local-Synergy Value Model (LSVM)

Target % Savings with  Error guarantee UM Loss
Error Pruning (x4%) (x0.01) (x0.0005)

1.25

2.50

5.00

10.0 -35% [7.27 0.0072

95% confidence intervals over 50 draws of LSVM markets
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Summary Part 2

W Extension of simulation-based games methodology to markets
®m Development of pruning criteria exploiting economic theory

B Pruning results in substantial sample savings
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Part 3:
Empirical Mechanism Design

Empirical Mechanism Design: Designing Mechanisms from Data.
Enrique Areyan Viqueira, Cyrus Cousins, Yasser Mohammad, Amy Greenwald.
Uncertainty in Artificial Intelligence (UAI19).

On Approximate Welfare-and Revenue-Maximizing Equilibria for Size-Interchangeable Bidders.

Enrique Areyan Viqueira, Amy Greenwald, Victor Naroditskiy.
16th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS17).
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Mechanism design: designing games so that the ensuing behavior

of agents, at equilibrium, leads to desirable outcomes.

Examples abound:

Design of auctions B
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Designing negotiation protocols %‘g

Design of college admission systems
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The Rules of the Game Matter

frequency tender

15 Feb 2018

Il Bangladesh

The Bangladeshi government has raised a total of BDT52.89 billion (USD1.68 billion) from its 4G spectrum
auction, far below the expected BDT110 billion figure, with less than 30% of the 46.4MHz of spectrum put up for

sale bought in the tender, The Daily Star writes. Shahjahan Mahmood, chairman of the BTRC, said the regulator
was ‘not happy’ with the results of the auction, adding that the operators will have another opportunity to acquire
spectrum at the same price within the next six months.

Market leader GrameenPhone will pay USD408 billion for 5SMHz in the 1800MHz band, in addition to a fee to
convert its current holdings in the 900MHz and 1800MHz bands so as to make it technology neutral. Banglalink
was awarded 2x5.6MHz in the 1800MHz band and 5MHz of paired spectrum in the 2100MHz band for a total fee
USD308.6 million (excluding VAT), while it will pay a further USD35 million to convert its existing spectrum

"Bangladesh raises USD1.7bn from LTE
frequency tender." 15 Feb. 2018, https:/
www.telegeography.com/products/comm
supdate/articles/..

58 /80
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freq

15 Feb 201
Bl Bangla
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frequency tenc
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Airwaves in the 2,300 megahertz band sold out as telecom operators spent to

6 angladesh raises USD1.7bn from LTE
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increase their 4G mobile broadband services. Photo: Mint

Spectrum auction ends, govt makes
Rs65,789 crore, misses target

4 min read . Updated: 07 Oct 2016, 10:08 AM IST

Upasana Jain

Proceeds from spectrum auction a fraction of the Rs5.63 trillion of

airwaves on offer;

no bids were received for 700 MHz, 900 Mhz bands

"Spectrum auction ends, govt makes
Rs65,789 crore, misses target.”

07 Oct. 2016, https://www.livemint.com/
Industry/xt5r4Zs5RmzjdwulLUdwJMI/..
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Ghana

«/ITN Ghana poised to snap up
unallocated 800MHz 4G spectrum

5 Apr 2019

== Ghana

Mobile network operator (MNO) MTN Ghana is lining up to purchase the two remaining 2x5MHz blocks of

spectrum lots in the 800MHz band that were left unallocated after Vodafone Ghana acquired its own block of
2x5MHz for USD30 million last December, Adom News reports. ‘MTN intends to acquire this remaining spectrum
to enable it to continue to give its customers an increasingly better experience on the network,” MTN Corporate
Services Executive Robert Kuzoe confirmed to Adom News in response to a questionnaire.

The MNO was precluded from the National Communications Authority (NCA’s) auction of three separate 2x5MHz

spectrum lots in the 800MHz band at the end of last year, on the grounds that it had already acquired a 2x10MHz

lot in the same band back in December 2015. While the NCA confirmed at the end of the 2018 spectrum auction
hat ‘two companies submitted applications, with Vodafone emerging as the only successful applicant,” the

"MTN Ghana poised to snap up
unallocated 800MHz 4G spectrum.”

05 April. 2019, https://www.telegeography.
com/products/commsupdate/..
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The space of all possible mechanisms is too vast!
We focus on optimizing the parameters of an existing mechanism.

How should a mechanism designer set parameters of a mechanism,
given access only to data (or to a simulator capable of generating

data) about the game under different choices of parameters?

e.g., How should an auctioneer set the reserve prices of an auction
given access only to auction log data under different choices of

reserve prices?
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Empirical Mechanism Design - Schematic

Parameter search O .........

— A set © describes all
possible worlds (games)
— 0 in © is a“mechanism”

Equilibria estimation ‘ ....................................... e T

— Multiple players in each world

— Find an equilibria with
chosen 6

— The designer measures an
objective at equilibrium
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Fix some parametrizable mechanism, (e.g., a first-price auction).
® is the space of the mechanism's parameters (e.g., reserve prices)
0 € O is a choice of parameters (e.g., a reserve price of $10)

['y= <P, S, uy( - )> is a @-simulation-based game.

[ 0 0 0

0
IN\_>{S,= S [1.5= [..s= [
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Si f e th " libri . Worst-case, could
ince (often) it is the case that equilioria are not unique also define average-

(|ETy)| > 1), define: or best-case.

F(0;T'g) = min f(5;1)
SEE(T,)

The mechanism designer's problem is to find 6* such that:
0 € argmax F(0;1 )
0e®

|®| < 00, PAC algorithm
|® | = oo, Bayesian Optimization

62 /80



The "Design" Plan (a.k.a. Outline Part 3)

Empirical Mechanism Design

Experiments - Ad Auctions

63 /80



The "Design" Plan (a.k.a. Outline Part 3)

Empirical Mechanism Design

Experiments - Ad Auctions

63 /80



The "Design" Plan (a.k.a. Outline Part 3)

ol Mochaniom Dos

Experiments - Ad Auctions

64 /80



Electronic Advertisement Auctions

65 /80



Electronic Advertisement Auctions

66 /80 Image Credit: webcapitaltop.com/servicios/campanas-display



Electronic Advertisement Auctions

Quarterly internet advertising revenue growth trends
1997-2019 ($ billions)

Q2 2019
$2998
$30
$25
$20
$15
S130M
$5
T
r-
g$888

Source: |IAB/PwC Intemet Ad Revenue Report, HY 2019
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Electronic Advertisement Exchanges

At the heart of electronic advertisement are ad-exchanges:
centralized locations that match supply to demand, typically

though some kind of auction.

Advertisers might have different objectives, e.g., to immediately

convert clicks into purchases, or to maintain brand awareness.

We focus on brand-awareness advertisement where advertisers
need to reach a certain number of potential customers, from

certain demographics, for a fixed (pre-determined) budget
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Advertisers

Advertisement !
Campaign

Opportunity =

. > [Ad Exchange\/{
, ‘ Advertisement I I
& Campaign
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Electronic Advertisement Exchanges - Schematic

Advertisers

Advertisement !
Campaign

Opportunity \_

Advertlsement
Campaign

. > (Ad Exchange\/{
, ‘ Advertisement l I
& Campaign
Impression Y
\ &(

Maximize revenue

through reserve prices
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Electronic Advertisement Exchanges - Model

Stage 1: the ad exchange announces ¥ € R”, where

<1y -e Iy > € Olis such that r; is the reserve price for the jt

demographic or market segment.

Stage 2: all agents submit their bids (produced by heuristic

strategies we outline in the next slide).

Stage 3: some fixed number of impression opportunities arrive,

where the demographic of each is drawn from some distribution.

Stage 4: for each impression opportunity, the auctioneer runs an

auction. Final allocation and payments are computed.

Input: 7, Output: ad exchange revenue (sum of all payments).
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Electronic Advertisement Exchanges - Heuristics

O S o
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We devised two heuristics for our experimental setup.

—_
r

Walrasian or (Competitive) Equilibrium, denote by WE

Approximating equilibria in

® Bidding based on an (approxima combinatorial markets, work

of interest in its own right,
(Areyan et al. AAMAS17)

Waterfall, denoted by WF

® Bidding based on simulating the ad exchange dynamics.
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Experimental Setup

Draw K = 500 impression opportunities distributed in 8 market

segments.

We experiment with N = 4 agents, each allowed to chose from

the two strategies mentioned before, i.e., S = {WE, WF}.

Design space is © = R2. Here, < r,...,rg > € O is such that r;is

the reserve price for the jth demographic or market segment.

The task then if to find an 8-dimensional vector of reserve prices

r* € O that maximizes the ad exchange revenue, at equilibrium.
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Experimental Results
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Summary Part 3

We contribute an end-to-end methodology for the optimization

of mechanisms' parameters.
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Summary Part 3

We contribute an end-to-end methodology for the optimization

of mechanisms' parameters.
We empirically showed the effectiveness of our BO algorithms in

a styled but rich simulation of electronic advertisement

exchanges.

76 /80



Acknowledgments

Amy Greenwald

77 /80



Collaborators

Yasser Mohammad

m'N

|
-
~

Marilyn George Denizalp Goktas

78 /80



Institutions and Mentors

INDIANA UNIVERSITY

BLOOMINGTON

Jayash Koshal Hernan Rosas

79 /80



Thank you!

80 /80



