Predicting order direction using support vector machines

Enrique Areyan Viqueira ¹ Esfandiar Haghverdi ²

¹Department of Computer Science, Brown University

²School of Informatics and Computing, Indiana University

October 31, 2015

Outline

- Prediction of Order Direction
- Trade Classification Algorithms
- Support Vector Machines
- Oata
- Results
- Conclusions & Future Research

• The problem: Given an order, predict its direction (i.e. buy or sell).

- The problem: Given an order, predict its direction (i.e. buy or sell).
- Order types: limit buy order, a partial cancellation, a deletion, etc.

- The problem: Given an order, predict its direction (i.e. buy or sell).
- Order types: limit buy order, a partial cancellation, a deletion, etc.
- Contribution: A novel classification (prediction) method for order directionality.

- The problem: Given an order, predict its direction (i.e. buy or sell).
- Order types: limit buy order, a partial cancellation, a deletion, etc.
- Contribution: A novel classification (prediction) method for order directionality.
- A more general problem than trade classification problem
- Use Support Vector Machines (SVM) for one stock of the NASDAQ market

Trade Classification Algorithms

 P_T : execution price of a trade T.

T': the trade right before T

T'': the previous trade closest to T with $P_T \neq P_{T''}$.

Tick Rule

If $P_T>P_{T'}$, then T= Buy. If $P_T< P_{T'}$, then T= Sell. If $P_T=P_{T'}$, then (if $P_T>P_{T''}$ then T= Buy, else T= Sell).

Note that this algorithm is inconclusive in case there is no previous trade T'' such that $P_T \neq P_{T''}$.

Let Bid and Ask be the best bid and ask quotes at time t

Quote Rule

A trade is a Buy (Sell) if it is executed at a price that is higher (lower) that the quote midpoint.

If
$$P_T > \frac{Bid + Ask}{2}$$
, then $T = \text{Buy}$.
If $P_T < \frac{Bid + Ask}{2}$, then $T = \text{Sell}$.
If $P_T = \frac{Bid + Ask}{2}$, then inconclusive.

The biggest disadvantage of this algorithm: it cannot determine the direction of the trade if the execution price is the same as the quote midpoint.

- LR (Lee and Ready)
- If $P_T = \frac{Bid + Ask}{2}$, use **Tick Rule**, else use **Quote Rule**.

- LR (Lee and Ready)
- If $P_T = \frac{Bid + Ask}{2}$, use **Tick Rule**, else use **Quote Rule**.
- EMO (Ellis et al.)
- If $(P_T = Bid \text{ or } P_T = Ask)$, then use **Quote Rule**, else use **Tick Rule**.

Decile Rule (Chakrabarty et al.)

The bid-ask spread is divided into deciles (10% increments). Let s denote the spread: s = Ask - Bid and $Mid = \frac{Ask + Bid}{2}$

If $(P_T > Ask \text{ or } P_T < Bid \text{ or } Mid - 0.2s \le P_T \le Mid + 0.2s)$ then use **Tick Rule**.

If $(Mid + 0.2s < P_T \le Ask \text{ or } Bid \le P_T < Mid - 0.2s)$ then use **Quote Rule**.

Support Vector Machines

$$f(x) = h(x)^{T} \beta + \beta_0 = \sum_{i=1}^{n} \alpha_i y_i \langle h(x), h(x_i) \rangle + \beta_0.$$

We use:

$$K(x,x') = exp(-\gamma||x-x'||^2).$$

Input Space

Feature Space

¹Image from: http://www.inf.unitru.edu.pe/revistas/2014/13.pdf ◀ ▮ ▶ │ ▮ ♥ ♡ ℚ ♥

Data

- Time: seconds after midnight with decimal precision of at least milliseconds and up to nanoseconds
- 2 Type: this is a categorical feature with 6 possible values:
 - 1: submission of a new limit order.
 - 2: partial cancellation of a limit order
 - 3: total deletion of a limit order
 - 4: execution of a visible limit order
 - 5: execution of a hidden limit order
 - 7: trading halt indicator
- Order ID: unique order reference number
- Size: number of shares
- Price: dollar price
- Trade Direction:
 - -1: Sell limit order
 - 1: Buy limit order

Feature Selection

• Fundamental set of features $\mathcal{F} = \{Size, Price\}.$

Feature Selection

- Fundamental set of features $\mathcal{F} = \{Size, Price\}.$
- Secondary features $S = \{Time, Type, OrderId\}$

Feature Selection

- Fundamental set of features $\mathcal{F} = \{Size, Price\}.$
- Secondary features $S = \{Time, Type, OrderId\}$

```
 \begin{array}{ll} \mathcal{F}_1 &= \{ \textit{Size}, \textit{Price}, \textit{Time}, \textit{Type}, \textit{OrderId} \} \\ \mathcal{F}_2 &= \{ \textit{Size}, \textit{Price} \} \\ \mathcal{F}_3 &= \{ \textit{Size}, \textit{Price}, \textit{Time} \} \\ \mathcal{F}_4 &= \{ \textit{Size}, \textit{Price}, \textit{Type} \} \\ \mathcal{F}_5 &= \{ \textit{Size}, \textit{Price}, \textit{OrderId} \} \\ \mathcal{F}_6 &= \{ \textit{Size}, \textit{Price}, \textit{Time}, \textit{Type} \} \\ \mathcal{F}_7 &= \{ \textit{Size}, \textit{Price}, \textit{Time}, \textit{OrderId} \} \\ \mathcal{F}_8 &= \{ \textit{Size}, \textit{Price}, \textit{Type}, \textit{OrderId} \} \\ \end{array}
```

Feature Selection (cont.)

Parameter Optimization

• Need to choose two parameters: (C, γ) .

Parameter Optimization

- Need to choose two parameters: (C, γ) .
- ullet No a priori knowledge about what values of ${\it C}$ and γ will work

Parameter Optimization

- Need to choose two parameters: (C, γ) .
- ullet No a priori knowledge about what values of ${\it C}$ and γ will work
- Solution: simple grid search on the parameter space (C, γ) for different powers of 2 for both parameters: $(2^{-3}, 2^{-13}), (2^{-1}, 2^{-11}), (2^{1}, 2^{-9}), \dots, (2^{15}, 2^{5}).$

Parameter Optimization (cont.)

Results

Conclusions

SVMs Advantages

- easily trained and can handle vast amounts of data
- ereliable and highly accurate for trade direction classification, as shown by our experiments.
- fast predictions imply viable alternative for real time order (trade) classification problems
- independent of any hypothesis about the structure or functioning of a market
- 5 can be used in a wide variety of distinct markets.

Conclusions (cont.)

SVMs Disadvantages

- same as with any data-driven approach: does not provide the user with an explanation of the underlying mechanism at work
- 2 you get no simple rules like Tick rule or Quote rule either

Conclusions (cont.)

Two key points for SVM training: feature and parameter selection.

Both of these tasks can be automated to result in a highly accurate model as compared to previous classification rules available in the literature

We showed that for a particular data set SVM outperforms all other proposed rules.

Future Research

- Test our method on more stocks and other exchanges than NASDAQ and compare the results
- 2 Increase the efficiency and speed by parallelization
- Test other machine learning formalisms: trees, logistic regression, and neural networks