Tâtonnement Beyond Constant Elasticity of Substitution

Denizalp Goktas, Enrique Areyan Viqueira, Amy Greenwald Brown University, Computer Science Department

The Fisher Market Mode

Model

- *m* goods.
- Unit supply
 n buyers. For each buyer i:
 - A utility function $u_i: \mathbb{R}^m \to \mathbb{R}$
 - A budget $b_i \in \mathbb{R}_+$
- We consider continuous, concave, and homogeneous utility functions
 - Homogeneous: $u_i(\lambda x) = \lambda u_i(x)$

An outcome of a Fisher market:

- Allocations of goods to buyers
- Prices for goods

An allocation and prices are a Competitive (or Walrasian) equilibrium if:

- 1) The buyers' allocations are utility maximizing constrained by their budget
- 2) For each good j, either:
 - If price > 0, Demand = Supply
 - If price = 0, Demand \leq Supply

A Natural Price Adjustment Process: Tâtonnement

• Define the excess demand z(p, b) for good j at prices p and budgets b:

$$z(\boldsymbol{p}, \boldsymbol{b}) = \sum_{i} d_{i}(p, b_{i}) - \mathbf{1}_{m}$$

The discrete tâtonnement process is defined as:

$$\boldsymbol{p}(t+1) = \boldsymbol{p}(t) + z(\boldsymbol{p}(t), \boldsymbol{b})$$

Interpretation: If demand > supply, increase price
If demand < supply, decrease price

A Consumer Theory Duality Primer

Gradient Descent as Tâtonnement

 (Sub)gradient of our program at a price p is equal to negative excess demand!

$$\partial_{\boldsymbol{p}} \left(\sum_{j} p_{j} - \sum_{i} b_{i} \log \frac{\partial e_{i}(\boldsymbol{p}, \boldsymbol{v}_{i})}{\partial \boldsymbol{v}_{i}} \right) = -z(\boldsymbol{p}, \boldsymbol{b})$$
Our objective
Function

Negative
Excess
Demand

(Sub)gradient descent on our convex program is then equivalent to:

Results

Result 1: We generalize the Eisenberg-Gale program's dual and propose a convex program to compute and characterize equilibrium prices of Fisher markets via expenditure functions

- Through expenditure functions, constraints are abstracted out and program is unconstrained!
- Eisenberg-Gale's and Shymrev's program are special cases!
- Interpretation: Equilibrium prices are those that minimize distance between auctioneer's surplus and consumer surplus!

Result 2: We extend the $O\left(\frac{1}{t}\right)$ convergence rate of tâtonnement to a more general class of Fisher Markets, by using the equivalence between tâtonnement and gradient descent on our program

- We show that (generalized) gradient descent on our convex program is equivalent to the tâtonnement process
- We use results on the convergence of generalized gradient descent to prove the convergence rate of tâtonnement in continuous, strictly concave, and homogeneous (CSCH) Fisher markets

Market Type	Convergence Rate	Authors, Year
Fisher CES (excluding Linear)	$(1-\Theta(1))^t$	Cheung et al. 2020
Fisher Leontief	$O\left(\frac{1}{t}\right), \Omega\left(\frac{1}{t^2}\right)$	Cheung et al. 2020
Fisher Linear	$ig(1-\Theta(1)ig)^t$ (Ander Large Machier Ansumption)	Cole and Tao 2019
Fisher WGS	$(1-\Theta(1))^t$	Cole and Fleischer 2008
Fisher CSCH	$o\left(\frac{1}{t}\right)$	Our Results

A Consumer Theory Duality Primer

• Utility Maximization:

- Indirect Utility:
 - $v_i(\boldsymbol{p}, b_i) = \max_{\boldsymbol{x}: \boldsymbol{p} \cdot \boldsymbol{x} \leq b_i} u_i(\boldsymbol{x})$
- Marshallian Demand:
 - $d_i(\mathbf{p}, b_i) = \underset{\mathbf{x}: \mathbf{p} \cdot \mathbf{x} \leq b_i}{\operatorname{argmax}} u_i(\mathbf{x})$

• Expenditure Minimization:

• Expenditure:

•
$$e_i(\boldsymbol{p}, v_i) = \min_{\boldsymbol{x}: u_i(\boldsymbol{x}) \ge v_i} \boldsymbol{p} \cdot \boldsymbol{x}$$

Hicksian Demand

•
$$h_i(\boldsymbol{p}, v_i) = \underset{\boldsymbol{x}: u_i(\boldsymbol{x}) \geq v_i}{\operatorname{argmin}} \boldsymbol{p} \cdot \boldsymbol{x}$$

Our Convex Program: Equilibrium Prices through Expenditure functions

 $\min_{\boldsymbol{p}} \sum_{j \in [m]} p_j - \sum_{i \in [n]} b_i \log \left(\frac{\partial e_i(\boldsymbol{p}, v_i)}{\partial v_i} \right)$ Seller's Surplus

Buyers' Surplus

- **Result**: We generalize the Eisenberg-Gale program's dual and propose a convex program to compute and characterize equilibrium prices of Fisher markets via expenditure functions
- Through expenditure functions, constraints are abstracted out and program is unconstrained!
- Eisenberg-Gale's and Shymrev's program are special cases!
- Interpretation: Equilibrium prices are those that minimize distance between auctioneer's surplus and consumer surplus!

A Natural Price Adjustment Process: Tâtonnement

• Define the excess demand z(p, b) for good j at prices p and budgets b:

$$z(\boldsymbol{p}, \boldsymbol{b}) = \sum_{i} d_{i}(p, b_{i}) - \mathbf{1}_{m}$$
Excess
Demand
Excess
Demand

The discrete tâtonnement process is defined as:

$$p(t + 1) = p(t) + z(p(t), b)$$
Next Price
Previous
Price
Demand

Interpretation: If demand > supply increase price

If demand < supply decrease price

A New Stability Result

- **Result:** We extend the $O\left(\frac{1}{t}\right)$ convergence rate of tâtonnement to a more general class of Fisher Markets, by using the equivalence between tâtonnement and gradient descent on our program
- 1. We show that the (generalized) gradient descent on our convex program is equivalent to the tâtonnement process
- We use results on the convergence of generalized gradient descent to prove the convergence rate of tâtonnement in continuous, strictly concave, and homogeneous (CSCH) Fisher markets

Summary of Tâtonnement Convergence Results For Fisher Markets

Market Type	Convergence Rate	Authors, Year
Fisher CES (excluding Linear)	$(1-\Theta(1))^t$	Cheung et al. 2020
Fisher Leontief	$O\left(\frac{1}{t}\right), \Omega\left(\frac{1}{t^2}\right)$	Cheung et al. 2020
Fisher Linear	$\left(1-\Theta(1)\right)^t$ (Under Large Market Assumption)	Cole and Tao 2019
Fisher WGS	$(1-\Theta(1))^t$	Cole and Fleischer 2008
Fisher CSCH	$O\left(\frac{1}{t}\right)$	Our Results

Previous convergence results in blue our result in red