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	Overview	

•  A	game	among	strategic	agents	consists	of	ac2ons	
and	payoffs	to	players	depending	on	players	joint	acJons.	

•  A	fundamental	concern	is	to	predict	the	outcome	in	a	
game,	i.e.,	which	acJons	raJonal	players	will	choose.	We	
consider	Nash	equilibria	as	our	predicJon.	

•  Our	research	focus	is	on	learning	games	from	noisy	
observaJons	of	the	game’s	payoffs.		

•  Our	main	results	(1)	bounds	on	all	Nash	equilibria	of	a	
learned	game,	(2)	algorithms	to	efficiently	learn	games.	

ApproximaJng	Games	
•  A	game	G	is	compa2ble	to	a	game	G’	if	they	have	the	

same	players	and	acJons	but	possibly	different	payoffs.	
•  CompaJble	games	G	and	G’	are	very	close	if	their	payoffs	

don’t	differ	by	much,	say	ε	>	0.	Example:	

Game	G	 Strategy	C1	 Strategy	C2	

Strategy	R1	 1,	3	 2+ε,	-3	

Strategy	R2	 3,	4-ε	 0,	5	

Game	G’	 Strategy	C1	 Strategy	C2	

Strategy	R1	 1+ε,	3	 2,	-3	

Strategy	R2	 3,	4	 0,	5-ε	

Main	Result	on	ApproximaJon	

Nash(G)⊆ Nash2ε (G ')⊆ Nash4ε (G)
Nashε (G) is	the	set	of	ε-Nash	of	Game	G.	We	show:	

Learning	Games	and	Empirical	Results	
•  We	assume	access	to	a	simulator	capable	of	producing	

any	number	of	samples	for	any	possible	payoff	(any	cell	
in	the	game’s	matrix)	

•  We	propose	and	evaluate	two	PAC-Learner	algorithms	to	
learn	empirical	games.	Global	and	Progressive	Sampling.	

•  Progressive	Sampling	is	a	novel	algorithm	that	samples	
dynamically,	saving	on	samples	where	fewer	data	are	
necessary	to	confidently	learn.	

•  We	empirically	demonstrate	pruning	substan2ally	saves	
on	sampling.		
(results	to	the	right.	Feel	free	to	ask	me	any	quesJon!	:-).	

•  We	think	of	G	as	our	ground-truth	game	and	G’	as	an	
empirical	game	built	from	observaJonal	data.	

•  First	containment	shows	perfect	recall,	all	ground-truth	
Nash	are	in	the	approximaJon.		

•  Second	containment	shows	approximately	perfect	
precision,	all	Nash	of	the	approximaJon	are	close	to	
Nash	in	the	ground	truth	

Experimental	Results	

More	on	StaJsJcal	Bounds	

Empirical	Mechanism	Design	

•  Pruning	significantly	reduces	the	number	of	samples	
required	to	achieve	a	desired	accuracy	as	compared	to	
global	sampling.	

•  Hoeffding’s	inequality.	Given	the	desired	error	accuracy	
ε>0,	and	the	desired	failure	probability	δ	>	0,	Hoeffding’s	
inequality	provides	the	number	of	samples	needed	to	
obtain	an	empirical	game	G	that	is	ε	close	to	G’	with	
probability	1	–	δ.	The	number	of	samples	is	a	funcJon	of	
the	size	of	the	game	(#players	and	#strategy	profiles).	

•  Rademacher	Complexity.	An	alternaJve	to	Hoeffding’s	
inequality	that	is	independent	of	the	size	of	the	game	but	
depends	on	the	sampled	data.	More	research	on	
Rademacher	complexity	for	learning	games	is	current	
ongoing	work.	

ApplicaJons	
We	can	learn	all	equilibria.	Great!	…		

Wait,	why	do	we	care?	

•  Mechanism	Design:	the	science	of	designing	the	rules	
of	a	game	(system)	such	that	the	strategic	interacJon	
among	parJcipants	leads	to	desirable	outcomes.		

•  Parametric	Mechanism	Design:	the	mechanism	
designer	can	opJmize	parameters	of	the	system,	e.g.,	
reserve	prices	in	aucJons.		

•  Assuming:	for	every	parameter	of	the	system,	
parJcipants	play	a	set	of	known	acJons	and	their	
interacJon	leads	to	an	equilibrium	(or	close).		

•  The	punch	line:	our	methodology	allows	control	for	
any	possible	equilibria	that	might	be	played,	allowing	
the	designer	to	opJmize	with	confidence.	

•  Example	applica2on:	electronic	adverJsement	
exchange	systems	such	as	Google	AdWords©,	Amazon	
Sponsored	Brands	and	Sponsored	Products©,	etc.		


