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Experimental Results

(b) GS vs. PSP with Hoeffding Bounds.
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Overview

A game among strategic agents consists of actions

Pruning significantly reduces the number of samples
and payoffs to players depending on players joint actions.

required to achieve a desired accuracy as compared to

* A fundamental concern is to predict the outcome in a global sampling.
game, i.e., which actions rational players will choose. We W y

consider Nash equilibria as our prediction.

Our research focus is on learning games from noisy I\/Iore on Statistical Bounds

observations of the game’s payoffs.
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Our main results (1) bounds on all Nash equilibria of a I e a r n a I I e u I I I b r I a Of a m e S * Hoeffding’s inequality. Given the desired error accuracy
learned game, (2) algorithms to efficiently learn games. >0, and the desired failure probability 6 > 0, Hoeffding’s
inequality provides the number of samples needed to

Aroximatin Games obtain an empirical game G that is € close to G” with
probability 1 — 6. The number of samples is a function of
* Agame G is compatible to a game G’ if they have the fr O I I I d a t a - the size of the game (#players and #strategy profiles).
same players and actions but possibly different payoffs.  Rademacher Complexity. An alternative to Hoeffding’s
inequality that is independent of the size of the game but
depends on the sampled data. More research on

Rademacher complexity for learning games is current
ongoing work.

Compatible games G and G’ are very close if their payoffs
don’t differ by much, say € > 0. Example:

Game G Strategy C1 Strategy C2 Game G’ Strategy C1 Strategy C2

Strategy R1 1,3 2+€, -3 Strategy R1 1+¢, 3 2, -3
Strategy R2 3, 4-¢ 0,5 Strategy R2 3,4 0, 5-¢

Main Result on Approximation

Applications

We can learn all equilibria. Great! ...

Wait, why do we care?
Nash_(G) is the set of e-Nash of Game G. We show:

Nash(G) € Nash,, (G") € Nash, (G)

* We think of G as our ground-truth game and G’ as an
empirical game built from observational data.

Empirical Mechanism Design

Mechanism Design: the science of designing the rules
of a game (system) such that the strategic interaction

. . among participants leads to desirable outcomes.
First containment shows perfect recall, all ground-truth &P P

Nash are in the approximation. Parametric Mechanism Design: the mechanism

designer can optimize parameters of the system, e.g.,

Second containment shows approximately perfect . .
reserve prices in auctions.

precision, all Nash of the approximation are close to
Nash in the ground truth

Learning Games and Empirical Results

* We assume access to a simulator capable of producing
any number of samples for any possible payoff (any cell
in the game’s matrix)

Assuming: for every parameter of the system,
participants play a set of known actions and their
interaction leads to an equilibrium (or close).

The punch line: our methodology allows control for
any possible equilibria that might be played, allowing
the designer to optimize with confidence.

* We propose and evaluate two PAC-Learner algorithms to
learn empirical games. Global and Progressive Sampling.

Example application: electronic advertisement
exchange systems such as Google AdWords©, Amazon
Sponsored Brands and Sponsored Products©, etc.
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Progressive Sampling is a novel algorithm that samples
dynamically, saving on samples where fewer data are
necessary to confidently learn. —
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 We empirically demonstrate pruning substantially saves
onh sampling.
(results to the right. Feel free to ask me any question! :-).




