
Orthogonal Projections
Lay 6.3

1 A Decomposition

Consider a vector y ∈ Rn, and suppose we are given some subspace W of
Rn. We want to decompose y into a part lying in W and a part not in W .
That is, write y as a linear combination of two vectors, one lying in W and
one not in W . But there are many ways to do this, as the following example
shows:

Example 1.1. Let y =

[
1
1

]
and let W = span{e1}. Then y = e1 + e2 is one

such decomposition of y. But 2e1 + (−e1 + e2) is another (since −e1 + e2 is
not in W ).

So there are potentially many ways to construct such decompositions.
However, if we impose a stricter condition on the second vector than “not
in W ,” we can define a unique decomposition which we will call “orthogonal
decomposition” which has a number of nice uses.

2 Orthogonal projection

The trick is to ask for a decomposition y = ŷ + z, where ŷ ∈ W and
z ∈ W⊥, the orthogonal complement of W . We call this an orthogonal
decomposition of y, and we call ŷ the orthogonal projection of y onto
W .

Theorem 2.1. Let W be a subspace of Rn. Then each y ∈ Rn can be written
uniquely as

y = ŷ + z,
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where ŷ ∈ W and z ∈ W⊥. Moreover, if we know an orthogonal basis
u1, . . . ,up for W , then we can find the orthogonal projection ŷ by

ŷ =
y · u1

u1 · u1

u1 + . . . +
y · up

up · up

up.

Note that the formula for the orthogonal projection above looks similar
to the one for basis coefficients in terms of an orthogonal basis.

Example 2.2. Consider R3, with W = span{e1, e2}, and let y =

2
3
4

. Since

{e1, e2} is an orthogonal basis for W , we can use the above formula to see

that ŷ =

2
3
0

. Recall the distance function dist, where dist(v,w) = ‖v−w‖.

Notice that dist(y, ŷ) =
√

42 = 4.

On the other hand, if v =

v1v2
0

 is another vector in W , then dist(y,v) =√
(2− v1)2 + (3− v2)2 + 42, which is > 4 if v 6= ŷ. So ŷ is the closest vector

in W to y. We will see in what follows that this is not a coincidence.
Note that ŷ is independent of the choice of basis for W , as long as the

basis is orthogonal (you can try this in our specific example by checking what

you get if you use the orthogonal basis


 1
−1
0

 ,

1
1
0

.

We close this section by noting that we will often prefer the notation
projWy for ŷ, since it makes clear exactly what subspace we are projecting
onto.

3 Properties of the orthogonal projection

One important property of the orthogonal projection:

Theorem 3.1. If y ∈ W , then projWy = y.

Another is the following, which says that our “closest vector” observation
from the past example is a general fact:
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Theorem 3.2. If W is a subspace of Rn, and y is any vector in Rn, then
projWy is the closest vector in W to y. What we mean by this is that

dist(v,y) > dist(projWy,y)

for any v ∈ W such that v 6= projWy.

The reason the above theorem holds is because of the Pythagorean theo-
rem for orthogonal vectors; see Figure 4 in Lay for a good picture of how the
orthogonal projection looks, which will help you understand why it is true.

4 A cute representation

If the basis {u1, . . . ,up} is orthonormal, then the formula for projWy is
simpler, since we can drop all factors that look like ui ·ui (since ui ·ui = 1 for
all i). This fact allows for the following cute representation of the orthogonal
projection:

Theorem 4.1. If {u1, . . . ,up} is an orthonormal basis for W (a subspace of
Rn), then, defining

U =
[
u1 . . . up

]
,

we have
projWy = UUTy

for all y ∈ Rn.

This is just a consequence of the definitions (writing out UUTy, you
will see that you get the correct sequence of dot products from the formula
earlier).
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