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We have seen a bit of “dynamical systems” in the presentation of the Fibonacci numbers.
Today we will talk more about them.

1 Dynamical Systems

A dynamical system is a sequence of vectors x0,x1, . . . in Rn with an associated n×n matrix
A, such that xk+1 = Axk for all k. The idea, as in what we have seen before, is that xk

represents the state of some system at time k, and multiplying by A moves the system
forward in time.

If A is diagonalizable, there is a basis {v1, . . . ,vn} for Rn made up of eigenvectors of A
with corresponding eigenvalues λ1, . . . , λn. In particular, we can write

x0 = c1v1 + . . .+ cnvn

for some unique set of constants c1, . . . , cn. Applying A to both sides gives

x1 = Ax0 = c1λ1v1 + . . .+ cnλnvn.

Note that the same λi may appear more than once if some eigenspace has dimension > 1.
In general, applying A multiple times gives

xk = c1λ
k
1v1 + . . .+ cnλ

k
nvn.

So a dynamical system with a diagonalizable matrix A is easy to analyze.

Example 1.1. This is Lay’s example, so we will go with it, though with some nicer numbers.
Consider a forest populated by rats and owls. In the absence of owls, the rats will reproduce
off of vegetable matter in the forest, but owls will kill the rats. On the other hand, the owls
will starve to death without rats. The populations Ok, Rk of rats and owls in month k are
given by the equations

Ok+1 =
1

2
Ok +

1

4
Rk

Rk+1 = −pOk +
3

2
Rk.
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Here p is a parameter that we will vary to see how greater predation affects the system.

Organizing the populations in the form of a vector xk =

[
Ok

Rk

]
, we see xk+1 = Axk, where

A =

[
1/2 1/4
−p 3/2

]
.

The characteristic polynomial of this matrix is λ2 − 2λ + p+3
4
, which has real roots if and

only if p ≤ 1. Moreover, in the case that p < 1, it is easy to see from the quadratic formula
that there will be two distinct eigenvalues, and so A will be diagonalizable. If p = 1, there is
only one eigenvalue, and a calculation of the eigenspace shows that A is not diagonalizable.

Let’s choose p = 1/9. In this case, the eigenvalues are λ1 = 1+
√

2/3 and λ2 = 1−
√

2/3.
Corresponding eigenvectors are v1 = (3− 2

√
2, 2/3) and v2 = (3 + 2

√
2, 2/3).

Let’s say we start with some population vector x0 with nonzero entries (we start with
more than zero owls and rats). Writing x0 = c1v1 + c2v2, we see that

xk = c1λ
k
1v1 + c2λ

k
2v2.

Now, notice that 0 < λ2 < 1 (in fact, λ2 ≈ 0.057). Therefore, λk2 → 0 as k →∞ and so

xk ≈ c1λ
k
1v1

as k → ∞. Now, λ1 ≈ 1.94 and so both the owls and rats grow in population. In fact, the
population of each almost doubles month-by-month.

2 Trajectories

Given a dynamical system where xk+1 = Axk, we call the sequence x0,x1, . . . the system’s
trajectory, and think of it as a depiction of how the system evolves over time. In the
case that A is diagonalizable, there is a lot we can say about how these trajectories look
graphically.

It is best if you read Lay’s subsections “Graphical Description of Solutions” and “Change
of Variable” to get the whole picture here. The idea is that if an eigenvalue has absolute
value > 1, it represents a direction or axis along which the trajectory gets pushed away from
the origin, etc.
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