Eigenvalues / Characteristic Equation Lay 5.2

November 6, 2013

Today's topic is mostly how to find the eigenvalues of a matrix (given the eigenvalues, we learned last time how to find the eigenspaces).

1 The characteristic equation

Let A be an $n \times n$ matrix. A scalar λ is an eigenvalue of A if and only if there is some nonzero **x** such that

 $A\mathbf{x} = \lambda \mathbf{x}$, or equivalently $(A - \lambda I)\mathbf{x} = \mathbf{0}$. Therefore, λ is an eigenvalue if and only if $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution, which (by the invertible matrix theorem) happens if and only if $(A - \lambda I)$ is not invertible. But this is equivalent to $\det(A - \lambda I) = 0$.

We have just proved the following theorem:

Theorem 1.1. A scalar λ is an eigenvalue of A if and only if it satisfies the characteristic equation

$$\det(A - \lambda I) = 0$$

Example 1.2. Find the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}.$$

Notice that this matrix is upper triangular, so our previous theorem gives us that the eigenvalues are the diagonal entries 3, 2. We can also use the characteristic equation:

$$\det(A - \lambda I) = \det \begin{bmatrix} 3 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{bmatrix} = (3 - \lambda)(2 - \lambda)(2 - \lambda) = 0,$$

which gives the roots $\lambda = 3, 2$, and 1. Finding the eigenvectors corresponding to 2:

$$A - 2I = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix},$$

and augmenting and finding the RREF gives us that the eigenspace is spanned by

$$\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}.$$

The eigenspace corresponding to the eigenvalue 3 is spanned by the vector (1,0,0) (I leave this to you to check).

Proposition 1.3. Given an $n \times n$ matrix A, the function det $(A - \lambda I)$ (regarded as a function of λ) is a polynomial of degree n. We call it the characteristic polynomial.

Since the characteristic equation has the form polynomial = 0, an eigenvalue can appear multiple times as a root of the characteristic equation (for instance, the equation $(\lambda - 1)^2 = 0$ has 1 as a double root).

Definition 1.4. An eigenvalue λ of the matrix A has algebraic multiplicity k if its multiplicity as a root of the characteristic equation is k. So a double root of the characteristic equation has algebraic multiplicity 2, etc.

Example 1.5. A 10×10 matrix A has characteristic polynomial

$$\lambda^{10} - \lambda^8$$

What are its eigenvalues and their algebraic multiplicities?

We can factor the polynomial to get $\lambda^8(\lambda^2 - 1) = \lambda^8(\lambda + 1)(\lambda - 1)$. So there are three eigenvalues: 0, 1, and -1. The eigenvalue 0 has algebraic multiplicity 8 and the others have algebraic multiplicity 1.

2 Similarity

Definition 2.1. Two $n \times n$ matrices A and B are similar if there is some invertible matrix P such that

$$B = P^{-1}AP. (1)$$

Note that the definition is symmetric: if there is matrix such that (1) holds, then multiplying on the left by P and on the right by P^{-1} gives $A = PBP^{-1}$, and since P^{-1} is invertible, we see that the same condition holds.

Similarity is important because two matrices that are similar represent *the same linear transformation after a change of basis.* We will return to this point soon. Right now, we will focus on one aspect of this fact:

Theorem 2.2. If A and B are similar, then they have the same characteristic polynomial and eigenvalues.

Proof.

$$det(B - \lambda I) = det(P^{-1}AP - \lambda P^{-1}P)$$

= det(P^{-1}(A - \lambda I)P)
= det(P^{-1}) det(A - \lambda I) det(P)
= det(A - \lambda I),

since $1 = \det(I) = \det(PP^{-1}) = \det(P)\det(P^{-1})$.

However, if A and B have the same eigenvalues, they are not necessarily similar, so there is no converse to the above theorem in general.

3 An application and motivation for what comes next

If the eigenvectors of A form a basis for \mathbb{R}^n , then a lot of problems are made easier.

Say we have a sequence (a **dynamical system**, to use the term Lay likes) of vectors $\{\mathbf{x}_k\}$ such that

 $\mathbf{x}_{k+1} = A\mathbf{x}_k = A^{k+1}\mathbf{x}_0$ for all k (think back to Markov chains for a special class of dynamical systems; note that most dynamical systems are not Markov chains). If the eigenvectors of A form a basis $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ (with eigenvalues $\lambda_1, \ldots, \lambda_n$) for \mathbb{R}^n , then we can write $\mathbf{x}_0 = c_1\mathbf{b}_1 + \ldots c_n\mathbf{b}_n$, so

$$\mathbf{x}_k = c_1 \lambda_1^k \mathbf{b}_1 + \ldots + c_n \lambda_n^k \mathbf{b}_n.$$

3.1 Fibonacci numbers

Here is an application to show why this is useful. The Fibonacci numbers are a sequence of numbers defined by

$$F_0 = 0, F_1 = 1,$$
 and $F_n = F_{n-1} + F_{n-2}$ for larger n .

This sequence describes the number of breeding pairs of rabbits at generation n in a simple model for rabbit breeding.

The short description: we start with one pair of rabbits $(F_1 = 1)$, they mate and undergo one month of pregnancy and so the number of rabbits is unchanged $(F_2 = 1)$, then the third month the female gives birth and we have 2 pairs $(F_3 = 2)$, and in general:

• The number of pairs of rabbits alive in month n is equal to the number of pairs of rabbits alive in month n-1 plus the number of rabbits alive at time n-2.

It is a simply defined sequence of numbers and the model is intuitively interesting. Yet, it is not clear how to find the number of rabbits alive at time n without doing a lot of tedious adding. We will show how to get around this problem using eigenvectors.

Defining the vectors

$$\mathbf{x}_n = \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix},$$

then for $n \ge 1$, the vectors $\{\mathbf{x}_n\}$ obey the equation $A\mathbf{x}_{n+1} = Ax_n$, where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

It is not hard to show that the eigenvalues of this matrix are

$$\lambda_1 = \frac{1}{2}(1+\sqrt{5}), \quad \lambda_2 = \frac{1}{2}(1-\sqrt{5}).$$

Since there are two eigenvalues, the eigenvectors of A form a basis for \mathbb{R}^2 (why?). The eigenspace corresponding to λ_1 is spanned by

$$\mathbf{v}_1 = \begin{bmatrix} (1/2)(1+\sqrt{5})\\ 1 \end{bmatrix}$$

and the eigenspace corresponding to λ_2 is spanned by

$$\mathbf{v}_2 = \begin{bmatrix} (1/2)(1-\sqrt{5})\\ 1 \end{bmatrix}.$$

Since $\mathbf{x}_1 = (1, 0)$, we can write $\mathbf{x}_1 = (\mathbf{v}_1 - \mathbf{v}_2)/\sqrt{5}$. Therefore

$$\mathbf{x}_k = \frac{\lambda_1^{k-1} \mathbf{v}_1 - \lambda_2^{k-1} \mathbf{v}_2}{\sqrt{5}},$$

and so the nth Fibonacci number is given by

$$F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

It is quite a surprise that although the Fibonacci numbers are all integers, the number $\sqrt{5}$ is so important in finding them!