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1 From last time

Remember from last time we were interested in the stationary distribution q of the Markov
chain transition matrix P :

Pq = q. (1)

Notice that the action of P on q is very simple. Today’s philosophy will be: given a
matrix A, can we find vectors that A acts on in a “simple” way?

2 Eigenvectors

Let A be an n× n matrix.

Definition 2.1. We say a nonzero vector x is an eigenvector of A if there is some scalar
λ such that Ax = λx. We call λ an eigenvalue of A. Then x is said to be the eigenvector
corresponding to the eigenvalue λ.

Note that in the above definition, it is important that A be square.

Example 2.2. Let

A =

[
2 −4
−1 −1

]
.

Then 3 and −2 are eigenvalues of A. Indeed, an eigenvector corresponding to 3 is[
−4
1

]
,

and an eigenvector corresponding to −2 is[
1
1

]
.

Check this!
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Notice that any (nonzero) scalar multiple of an eigenvector is an eigenvector correspond-
ing to the same eigenvalue.

2.1 Finding eigenvectors

We will talk next time about how to find the eigenvalues of a matrix. Today we will talk
about a less ambitious goal: if you are given an eigenvalue of the matrix, how do you find
an eigenvector?

The answer is as follows. If λ is an eigenvalue of A, then the corresponding eigenvector
x satisfies

Ax = λx.

Subtracting from both sides gives

(A− λI)x = 0.

So if you know that λ is an eigenvalue, you can find the eigenvectors corresponding to λ
by solving the above linear system.

Example 2.3. Consider A from the last example. We know that 3 is an eigenvalue. To find
the eigenvectors corresponding to this eigenvalue, we find the vectors x satisfying[

−1 −4
−1 −4

]
x = 0.

It is simple to check that all x satisfying this equation must be multiples of

[
−4
1

]
.

2.2 Eigenspaces

We have noted already that any multiple of an eigenvector corresponding to an eigenvalue
λ is also an eigenvector corresponding to λ. In fact, more is true:

Theorem 2.4. Let A be n × n. If λ is an eigenvalue of A, then the union of the zero
vector with the set of eigenvectors corresponding to λ forms a subspace, the “eigenspace of
A corresponding to λ”.

Proof. This is immediate, because the set of eigenvectors corresponding to λ is the nullspace
of A − λI, excluding the zero vector. So adding the zero vector to this set of eigenvectors
gives us nul(A− λI), which is a subspace.

We have so far only seen one-dimensional eigenspaces. Of course, we can have bigger
ones, as shown by the following trivial example:
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Example 2.5. Let

A =

2 0 0
0 2 0
0 0 1

 .
Then A has the eigenvalues 2 and 1. A basis for the eigenspace corresponding to 2 is

{e1, e2}.

Example 2.6. Consider the matrix 2 1 1
1 2 1
1 1 2

 .
Find a basis for the eigenspace corresponding to the eigenvalue 1.
We subtract off 1I = I from the above matrix, and use the standard method for finding

the basis of a nullspace. The augmented matrix is1 1 1 0
1 1 1 0
1 1 1 0

 .
The RREF of the above matrix is 1 1 1 0

0 0 0 0
0 0 0 0

 .
So the nullspace is the set

−x2 − x3x2
x3

 : x2 ∈ R, x3 ∈ R


and so a basis is given by 

−1
1
0

 ,
−1

0
1

 .

Please, if you don’t understand how the basis was found, look back in Lay to the section
where he describes finding the basis for a null/column space!

3 Eigenvalues of triangular matrices

Theorem 3.1. The eigenvectors of an upper- or lower-triangular matrix are the entries
along the main diagonal.
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Proof. See Lay for a full proof. The main idea is to look at the equation (A − λI)x = 0,
which has a nontrivial solution if and only if the equation has a free variable, which happens
if and only if one of the diagonal entries of A− λI is zero.

4 Eigenvectors and independence

The main point of the following theorem is that no eigenvector corresponding to an eigenvalue
λ can be written as a linear combination of eigenvectors corresponding to eigenvalues other
than λ:

Theorem 4.1. If x1, . . .xr are eigenvectors corresponding to distinct eigenvalues λ1, . . . , λr
of the n× n matrix A, then the set

{x1, . . . ,xr}

is linearly independent.

Proof. Assume (for the sake of contradiction) that the set is linearly dependent. Then there
exists some largest number p such that the set {x1, . . . ,xp} is linearly independent. Then
there are scalars c1, . . . , cp+1 not all zero such that

c1x1 + . . .+ cp+1xp+1 = 0. (2)

Multiplying both sides by A gives

c1λ1x1 + . . .+ cp+1λp+1xp+1 = 0.

Multiply (2) by −λp+1 and add it to the above to see

c1(λ1 − λp+1x1 + . . .+ cp(λp − λp+1)xp = 0.

Since each λi−λp+1 appearing above is nonzero (by distrinct eigenvalues), linear indepen-
dence of {x1, . . . ,xp} gives that c1 = 0, c2 = 0, . . . , cp = 0. But then (2) says that xp+1 = 0,
a contradiction (since it is an eigenvector, it is nonzero).

4.1 What is to come

I will spend a couple minutes talking about the power of eigenvectors. Basically, if A is an
n× n matrix whose eigenvectors form a basis for Rn, we can describe easily its action...this
will become a major theme.
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