
Vectors and Vector Equations
Reading: Lay 1.3

August 30, 2013

We’ve made some nice progress in the study of linear systems. To harness
the full power of the theory we are developing, we will need to study objects
called ”vectors”. So we are going to spend this lecture discussing vectors–
what they are, how they behave, etc. This will be a nice break from the
heavy computation that we dealt with last time.

1 Vectors in R2

A column vector is a matrix with only one column. Sometimes it helps to
think of it as an ordered list which is arranged in a column. In this section
we will talk about column vectors which have only two entries. Usually the
entries of vectors are real numbers; we call the set of all real numbers by the
name R, and the set of all vectors with two real entries is called R2.

Example 1.1. The following are vectors in R2:[
1
0

]
,

[
−3
π

]
.

In general the vectors of R2 have the form[
v1
v2

]
for v1 and v2 in R.
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It may seem silly, but we will emphasize here again that vectors are
defined as an ordered list. That is, two vectors are equal if and only if the
corresponding entries are equal. So[

1
0

]
=

[
1
0

]
,

but [
1
0

]
6=
[

0
1

]
.

This is very important!!
Usually we represent a vector by a bold letter–for instance, u.

1.1 Arithmetic in R2

We are going to define some basic arithmetic operations for vectors.

Definition 1.2. If u and v are elements of R2, we define u + v to be the
vector w whose entries are the sum of the corresponding entries in u and v.
That is, [

u1
u2

]
+

[
v1
v2

]
=

[
u1 + v1
u2 + v2

]
.

If c is a constant, we define cu to be the vector whose entries are those of u
multiplied by c:

c

[
u1
u2

]
=

[
c u1
c u2

]
.

We call a constant c like the one in the above definition a scalar. This is
just so we have a convenient word to distinguish vectors from the numbers
which they take as their entries or which multiply them. We call the kind of
multiplication that we just defined by the name “scalar multiplication.” This
means that we are multiplying vectors by scalars, not multiplying vectors by
each other. We will not talk about what it means to multiply two vectors
until much later in the course.

Example 1.3. Say we have two vectors

u =

[
1
4

]
, v =

[
2
−3

]
.
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Then

3u− 4v =

[
3− 8

12 + 12

]
=

[
−5
24

]
.

1.2 Picturing R2

This section of the notes is going to be a little poor compared to the equivalent
part of Lay because there are no pictures here. I will try to draw some
pictures in class, and the figures in Lay are not so bad for when you are
studying.

The nice thing about R2 is that it can be pictured as the plane. We
identify a vector [

u1
u2

]
as the point (u1, u2); that is, the point in the plane with x-coordinate u1 and
y-coordinate u2.

In this case, multiplication by scalars corresponds to translating the point
along the line which goes through both (0, 0) and (u1, u2). There is also a nice
picture for vector addition, called the parallelogram rule for addition.
If you draw the parallelogram (as in Lay, Figure 3) which has three of its
vertices u,v, and the origin, then u + v is the fourth vertex.

There is another way to think about vector addition in R2 which does
not really appear to be talked about in Lay, but which might help you to
imagine what is happening. Let

u =

[
u1
u2

]
, v =

[
v1
v2

]
be vectors, and draw an arrow from the origin to the point (u1, u2) and
another arrow from the origin to the point (v1, v2). Now take the arrow
corresponding to v and move it so that the starting point of the arrow (the
part without the “point”) is at (u1, u2). Now the place that this “moved”
arrow is pointing will be the point in the plane which represents the vector
u + v. Sometimes this is called the “tip to tail” or “head to tail” method.

2 Vectors in Rn

A vector with n real numbers as its entries is said to be an element of Rn.
The addition and scalar multiplication rules are defined just as in the case
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of R2. So, for instance,

c


u1
u2
...
un

 =


c u1
c u2

...
c un

 .
Vectors in any Rn satisfy a number of algebraic properties, which I will

list below in the same order as Lay does. It is easy to see why each of
these properties is true. So it is probably more important to try to think
for yourself why each of these properties is true, rather than trying to just
memorize this whole list; then, when you are working with vectors, you will
be able to use these identities more “naturally.” Of course, you should try to
study this material however works for you.

In what follows, we let 0 denote the vector in Rn whose entries are all
zero.

2.1 Algebraic properties of vectors in Rn

For all vectors u,v,w in Rn, the following properties hold (note that −u =
(−1)u:

1. u + v = v + u;

2. (u + v) + w = u + (v + w);

3. u + 0 = u;

4. u + (−u) = 0;

5. c(u + v) = cu + cv;

6. (c+ d)u = cu + du;

7. c(du) = (cd)u;

8. 1u = u.

The point of properties like the second one above are to allow us to
write vector sums without parentheses–e.g., u + v + w, and have it have
unambiguous meaning. If property 2 did not hold, this would not be possible,
because the sum would depend on the order in which we perform it.
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2.2 Linear combinations

Say we have vectors v1, . . . ,vp (in Rn) and constants c1, . . . , cp. The vector

y = c1v1 + . . .+ cpvp

is called the linear combination of v1, . . . ,vp with weights c1, . . . , cp.
Note that the weights in a linear combination can be any numbers, in-

cluding zero. Now, it turns out that linear combinations are related to the
problems we talked about in the last couple of lectures. What do I mean?
Say we have three vectors

u =

[
u1
u2

]
, v =

[
v1
v2

]
, b =

[
b1
b2

]
,

and I ask you a question: can we write b as a linear combination of u and
v? This question is the same as asking whether there are weights x1, x2 such
that

x1u + x2v = b

or, to write out the equations in full,

u1x1 + v1x2 = b1

u2x1 + v2x2 = b2.

So what we are really asking is whether a certain linear system is consistent.

Example 2.1. Say we have the vectors

u =

[
1
3

]
, v =

[
2
−2

]
, b =

[
1
0

]
.

Can we write b as a linear combination of u and v? Well, we can if and only
if the following linear system is consistent:

x1 + 2x2 = 1

3x1 − 2x2 = 0.

We know how to answer this question using the RREF techniques from last
time. I won’t work out the RREF here (you should try on your own), but
the answer is yes, we can write b as such a linear combination.
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Let’s introduce some notation before we summarize what we’ve learned.
If w1,w2, . . . ,wq are vectors, let[

w1 w2 . . . wq

]
denote the matrix whose columns are w1, . . . ,wq respectively.

Theorem 2.2. A vector equation

x1v1 + . . . xpvp = b

has the same solution set (that is, is solved by the same values of x1, . . . , xp)
as the linear system whose augmented matrix is[

v1 v2 . . . vp b
]
.

In particular, we can write b as a linear combination of the vectors v1, . . . ,vp

if and only if this linear system is consistent.

3 Span

One question that you might now ask is: given a set of vectors {vi} (each vi

is an element of Rn for the same number n), what does the set of all possible
linear combinations of vectors in this set look like?

Definition 3.1. Given vectors v1, . . .vp in Rn, we define span{v1, . . . ,vp}
to be the set of all linear combinations of the vectors v1, . . . ,vp. That is, the
span is the set of all vectors y which can be written

y = c1v1 + . . .+ cpvp.

By Theorem 2.2, we can tell whether a vector is in the span by determining
whether an appropriate linear system is consistent or inconsistent. There are
some ways to interpret the span geometrically, which Lay discusses in more
detail. For instance, the span of a single vector in R2 can be represented as
a line in the plane which passes through the origin.
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