
Systems of Linear Equations
Reading: Lay 1.1

August 26, 2013

1 Some Notes on Style

1.1 About these notes

Much of the course will be based on Lay. I recommend you do the readings.
When these notes cover topics from Lay, they will try to explain things in
a slightly different way. This way, when Lay describes things in a way that
you find confusing, these notes may be helpful. Similarly, when these notes
are confusing, perhaps Lay will be helpful!

1.2 About math

You may notice that the material involves a large number of definitions.
Math is very similar to (for instance) computer programming: you have to
spell out what you mean as carefully as you can.

2 Linear Equations

In this lecture, we introduce the idea of solving a linear equation. Here is
Lay’s definition of a linear equation.

Definition 2.1. A linear equation is an equation in the variables x1, x2, . . . , xn

that can be written in the form

a1x1 + a2x2 + . . . + anxn = b (1)

for some numbers a1, a2, . . . , an and some number b.
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When we say in Definition 2.1 that an equation “can be written in the
form” (1), we mean that by adding or subtracting terms to both sides of the
equation, you can produce something with the form (1).

Example 2.2. You have already seen linear equations in one variable x1

before. For instance,
5x1 + 2 = 12.

This is a linear equation because we can subtract 2 from both sides to place
it in the form

5x1 = 10.

Here n = 1, a1 = 5 and b = 10.

Example 2.3. In this course, we will usually have n > 1. That is, our linear
equations will generally be in many variables! For instance,

x1 + 3x2 − 27x3 − 3 = 1 + 2x2

is a linear equation. We can subtract 2x2 from both sides and add 3 to both
sides to put it in the form

x1 + x2 − 27x3 = 4.

Now we will describe what it means to “solve” a linear equation. For a
single linear equation in the variables x1, . . . , xn, we say a list of numbers
(s1, . . . , sn) is a solution if, when we substitute s1 for x1, s2 for x2, and so
on, we get a true statement.

Example 2.4. Consider the linear equation from Example 2.2. Then 2 is a
solution to this equation. Why? Because when we insert 2 in place of x1, we
get

5 ∗ 2 = 10,

which is a true statement.
Similarly, (3, 1, 0) is a solution to the linear equation of Example 2.3.

You should check this!

In the real world, you will generally be dealing with a large number of
linear equations in the same variables x1, . . . , xn. In a real life problem, the
goal is often to find a set of values which solve multiple linear equations
simultaneously.
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Definition 2.5. A system of linear equations or “linear system” is a
collection of one or more linear equations in the same variables x1, . . . , xn.

Definition 2.6. A solution of a system of linear equations in the variables
x1, . . . , xn is a list of numbers (s1, . . . , sn) that makes each equation of the
system a true statement when s1, . . . , sn are substituted for x1, . . . , xn re-
spectively. The solution set of a system of linear equations is the collection
of all solutions of the system.

Example 2.7. The following is an example of a system of linear equations:

x1 + 2x2 = 3

2x1 + 4x2 + x3 = 1

This is a system of linear equations in the variables x1, x2, x3 (the absence of
x3 in the first equation just means that a3 = 0). A solution to this system is
given by (1, 1,−5). Indeed, substituting into the first equation gives

1 + 2 ∗ 1 = 3,

which is a true statement, and substituting into the second equation gives

2 + 4− 5 = 1,

which is also true.

3 Solutions to linear systems

Some linear systems have no solutions. To take a very simple example, the
system

x1 − 1 = 0

x1 + 5 = 0.

The first equation is only true when x1 = 1, but then the second equation is
false.

One question which will occupy much of our time is the following: when
do linear systems have solutions, and how many? Lay gives the following
answer:
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Theorem 3.1. A system of linear equations has either no solutions, infinitely
many solutions, or exactly one solution.

This might seem mysterious right now, but we will talk more about it
in later lectures. Right now, it is just important to be aware of this fact.
We will say that a system of linear equations is inconsistent if it has no
solutions; otherwise, we say that it is consistent.

4 Solving linear systems

You may have some ideas already about how to find solutions to systems of
linear equations. Lay has some discussion about how to solve them using
graphs. Another way you might be familiar with is by “substitution.” For
instance. if we have the system

1.5x1 + 4x2 = 3

x1 − 6x2 = 0,

you could rearrange the second equation to see that x1 = 6x2. Putting this
information into the first equation gives

1.5 ∗ 6x2 + 4x2 = 3,

or x2 = 13/3 (and so x1 = 26). This is not a good method, but we will
describe a better one.

4.1 Matrix Notation

A simple way to encode the information in a linear system is via matrix
notation. Given a linear system like

x1 + 16x2 = 3

2x2 = 4,

the coefficient matrix is the rectangular array formed by lining up the
coefficients of each xi in columns (for instance, the coefficients a1 go in the
first column, etc). For the above linear system, this looks like[

1 16
0 2

]
.
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The augmented matrix has an added column, the last or rightmost
column, which contains the constants from the right side of the linear equa-
tions: [

1 16 3
0 2 4

]
. (2)

We will call a matrix m×n if it has m rows and n columns. For instance,
the augmented matrix (2) is a 2× 3 matrix.

4.2 Equivalent linear systems

We will say that two linear systems are equivalent if they have the same
solution sets–that is, if they have all the same solutions. Our main strategy
here for solving linear systems will be to replace them with equivalent systems
which are easier to solve.

So we need to know how to produce equivalent linear systems. We will
talk for the rest of the lecture about three basic ways to do this.

1. Adding a multiple of one equation to another equation;

2. Interchanging two equations;

3. Multiplying an equation by a nonzero constant factor.

Note that we perform these operations on both sides of the equation!

Theorem 4.1. If we perform any of the three operations above on a linear
system, we produce an equivalent linear system.

The reason we introduced matrix notation is that we can easily keep
track of the elementary row operations by using the augmented matrices.
The three operations above correspond to what we call the elementary
row operations.

Definition 4.2. The following operations on matrices are called elementary
row operations:

1. Replacing one row of the matrix by the sum of itself and a multiple of
another row;

2. Interchanging two rows;
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3. Multiplying all entries in a row by a nonzero constant factor.

What Theorem 4.1 says is that if we perform elementary row operations
on the augmented matrix of a linear system, we get the augmented matrix
of an equivalent linear system (make sure you understand this!). Another
thing to note (Lay discusses this also) is that elementary row operations are
reversible–for instance, if I multiplied a row by some number c 6= 0, I can get
back the original matrix by multiplying by 1/c.

4.3 How to use equivalent linear systems

In the next lecture, we will describe a detailed algorithm for solving linear
systems by finding simpler equivalent systems. One thing that Lay tries to
do in this section, though, is to give some idea of how to do it by using a
couple examples. You should read the three examples in Lay, then try to
work through them on your own!

The basic idea is to use our first elementary row operation (adding a
multiple of a row) to get all zeros in the first column of the matrix (except
possibly in one row). Then we repeat with the second column, and so on,
clearing out entries in the columns that correspond to coefficients. This gives
us the augmented matrix of a linear system where each equation has more
zero coefficients. Hopefully we get rows with few nonzero coefficients and
can finish up using substitution or other elementary techniques from your
calculus (and precalculus) knowledge.

Example 4.3. We will use elementary row operations to find the solution
set of the system

x1 + 2x2 = 1

2x1 + x2 = 4.

We first write the augmented matrix[
1 2 1
2 1 4

]
.

We want to “clear out the first column”. We add −2 times the first row
to the second row, producing the matrix[

1 2 1
0 −3 2

]
.
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Next, we multiply the second row by −1/3 to get[
1 2 1
0 1 −2/3

]
.

Finally, we add −2 times the second row to the first row:[
1 0 7/3
0 1 −2/3

]
.

Clearly the linear system has only one solution: x1 = 7/3, x2 = −2/3.
You should plug these in to the original system and make sure they work.

One other thing this method is useful for is recognizing inconsistent linear
systems. The hallmark of such a system is that, when we try to eliminate from
columns, we eventually clear out “too much” and end up with a row which
corresponds to an equation which cannot be satisfied, ever. For instance,
take the linear system whose augmented matrix is 3 9 3

1 2 1
1 −2 5

 .

We first multiply the first row by 1/3: 1 3 1
1 2 1
1 −2 5

 .

adding −1 times the first row to each of the other two rows gives 1 3 1
0 −1 0
0 −5 4

 .

Now adding −5 times the second row to the third row gives us 1 3 1
0 −1 0
0 0 4

 .

The last row corresponds to the equation 0 = 4, which is never satisfied.
Therefore, our original linear system is inconsistent–in order for it to have a
solution, the equation 0 = 4 would have to be satisfied, which it clearly is
not.
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