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Consider the matrix

A =

[
a b
c d

]
.

Remember that before we defined a number called the determinant of A:

detA = ad− bc,

with a special property: whenever detA 6= 0, we were guaranteed A was
invertible, and in fact had the explicit formula

A−1 =
1

detA

[
d −b
−c a.

]
(1)

If you don’t believe (1), it is easy to convince yourself; just compute the
matrix products AA−1 and A−1A using the above formula for A−1, and you
will see that both products give the identity matrix I2.

Today we will define the determinant for n × n matrices. Our goal is to
define det so that the following property holds for all square matrices A:

• A is invertible if and only if detA 6= 0.

This lecture is going to be devoted to just engineering a definition of deter-
minant, based on the one we have for 2× 2 matrices, such that it is at least
plausible that the above property holds. Next time, we will explore more
closely the relationship to invertibility.
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1 Definition of Determinant: 3× 3

Let’s start by looking at an invertible 3× 3 matrix A:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

We need to remember two important properties of invertible matrices in what
follows:

1. If an n×n matrix B is invertible, it has n pivot positions (in particular,
it has no columns or rows which are all zero);

2. If B is invertible, any matrix we get by performing row operations on
B is still invertible (since we don’t change the number of pivots).

Since the first column of A is not the zero column, it has a nonzero entry;
we might as well assume that a11 6= 0 (we can always do a row interchange
to make this true). Let’s perform some row operations on A: first multiply
rows 2 and 3 by a11 to get the matrix

A′ =

 a11 a12 a13
a11a21 a11a22 a11a23
a11a31 a11a32 a11a33

 ,

then add −a21 times row 1 to row 2, and −a31 times row 1 to row 3, to get

A′′ =

a11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 a11a32 − a12a31 a11a33 − a13a31

 .

Now, A′′ is still invertible by our “two properties”, so it has a pivot position
in the second column; since a11 is already a pivot, this pivot position has to
lie in either the second or third rows. This means that either the (2, 2) entry
or the (3, 2) entry of A′′ is nonzero; we might as well assume that A′′22 6= 0
(otherwise we could just interchange rows).

So we do to A′′ something similar to what we did in the beginning to A.
We multiply row 3 of A′′ by the (nonzero!) number a11a22 − a12a21, then we
add the appropriate multiple of row 2 to row 3 to clear out the second entry
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of row 3 (the “appropriate multiple”) here is a11a32 − a12a31. Rather than
work this calculation, we just show the result:

A′′′ =

a11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 0 a11∆

 ,

where

∆ = (a11a22a33−a11a23a32)− (a12a21a33−a12a23a31)+(a13a21a32−a13a22a31).

Note that A′′′ is invertible (because A is), so ∆ 6= 0.
We will define detA to be the number ∆ above. This gives us a definition

of det for 3 × 3 matrices, and we see that detA 6= 0 when A is invertible.
We will soon see that the converse holds; that is, if detA 6= 0, then A is
invertible. First, we will cast ∆ in a more illuminating form which will help
us guess a generalization to bigger matrices. Consider the 2 × 2 submatrix
of A obtained by deleting the first row and column of A; we denote this
submatrix by A11:

A11 =

[
a22 a23
a32 a33

]
.

Then detA11 = a22a33−a32a23. So the first term of ∆ above is actually equal
to a11 detA11.

Similarly, if we let A12 denote the submatrix of A obtained by deleting
the first row and second column of A, and we let A13 be defined similarly,
we have

detA = ∆ = a11 detA11 − a12 detA12 + a13 detA13. (2)

2 Determinants for general matrices

Our philosophy for defining determinants will be inspired by the form (2).
We will give a “recursive” definition: the determinants of 3× 3 matrices are
defined using determinants for 2× 2 matrices as in (2); the determinants of
4× 4 matrices are defined using determinants of 3× 3 matrices; etc.

This definition will actually also encompass our previous definition for
det of a 2× 2 matrix, as long as we set det

[
a
]

= a for a 1× 1 matrix.

Definition 2.1. Let A =
[
aij
]

be an n×n matrix (this notation just means
that we will denote the entry which lies in the ith row and jth column of A
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by aij). If n = 1, we define detA = a11, the only entry of A. Otherwise, we
set

detA = a11 detA11 − a12 detA12 + . . . + (−1)1+na1n detA1n

=
n∑

j=1

(−1)1+ja1j detA1j.

Example 2.2. Let

A =

1 2 3
2 4 6
0 0 4

 .

Then we have

detA = 1 · det

[
4 6
0 4

]
− 2 · det

[
2 6
0 4

]
+ 3 · det

[
2 4
0 0

]
= 1 · 16− 2 · 8 + 3 · 0 = 0.

Example 2.3. Let

A =

1 1 1
0 3 0
0 3 1

 .

Then

detA = 1 · det

[
3 0
3 1

]
− 1 · det

[
0 0
0 1

]
+ 1 · det

[
0 3
0 3

]
= 1 · 16− 2 · 8 + 3 · 0 = 0.

3 Cofactor expansion

Computing determinants of matrices bigger than 3 × 3 using the definition
rapidly gets horrible. A number of theorems and techniques exist to make
computing determinants of bigger matrices more palatable. The first we will
see is “cofactor expansion”.

Definition 3.1. Let A be an n× n matrix. Analogous to before, define Aij

to be the submatrix of A produced by deleting the ith row and jth column
of A. Then the (i, j) cofactor of A, denoted by Cij, is defined by

Cij = (−1)i+j detAij.
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Definition 3.1 gives us another way to rewrite the definition of a determi-
nant:

detA =
n∑

j=1

a1jC1j.

This notation is suggestive, and might lead you to believe that the determi-
nant could be computed using the cofactors Cij instead, where i 6= 1. In fact,
this is true and more. We could have performed what is called a cofactor
expansion using any row or column of the matrix, as we see in the following
theorem:

Theorem 3.2. Let A be an n×n matrix. Then detA can be computed using
cofactor expansion along any row of the matrix. The cofactor expansion along
the ith row is given by

detA = ai1Ci1 + ai2Ci2 + . . . ainCin.

On the other hand, we could also compute using cofactor expansion along any
column of the matrix. The cofactor expansion along the jth column is given
by

detA = a1jC1j + a2jC2j + . . . + anjCnj.

Justifying this theorem is somewhat complicated, so we will just take it
for granted without proof.

The cofactor expansion is quite useful for computing determinants in the
case that a given row or column has a lot of zero entries.

Example 3.3. Compute detA if

A =


1 2 3 1
4 5 6 1
2 2 2 2
0 0 0 1

 .
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Performing cofactor expansion along the bottom row, we see

detA = 0 · det

2 3 1
5 6 1
2 2 2

− 0 · det

1 3 1
4 6 1
2 2 2

+ 0 · det

1 2 1
4 5 1
2 2 2


+ 1 · det

1 2 3
4 5 6
2 2 2


= 0 + 0 + 0 + 1 ·

(
1 det

[
5 6
2 2

]
− 2 det

[
4 6
2 2

]
+ 3

[
4 5
2 2

])
= −2− 2(−4) + 3(−2) = 0.

We finish up today by showing a nice way to compute the determinants
of upper or lower triangular matrices.

Example 3.4. Using cofactor expansion on the first column of the following
3× 3 matrix,

det

3 3 3
0 2 1
0 0 4

 = 3 · det

[
2 1
0 4

]
= 3 · 2 · det

[
4
]

= 3 · 2 · 4 = 24.

The same technique works on any upper or lower triangular matrix.

Theorem 3.5. If A is upper or lower triangular, then detA is equal to the
product of the entries on the main diagonal of A.

This theorem will be the basis of a simpler method of computing deter-
minants than the ones we have seen so far; we will discuss this in a future
lecture.
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