Determinants, Part One
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Remember that before we defined a number called the determinant of A:

det A = ad — be,

with a special property: whenever det A # 0, we were guaranteed A was
invertible, and in fact had the explicit formula

L1 [d b
4 ~det A |—c a. (1)

If you don’t believe (1), it is easy to convince yourself; just compute the
matrix products AA~! and A=A using the above formula for A~!, and you
will see that both products give the identity matrix Is.

Today we will define the determinant for n x n matrices. Our goal is to
define det so that the following property holds for all square matrices A:

e A is invertible if and only if det A # 0.

This lecture is going to be devoted to just engineering a definition of deter-
minant, based on the one we have for 2 x 2 matrices, such that it is at least
plausible that the above property holds. Next time, we will explore more
closely the relationship to invertibility.



1 Definition of Determinant: 3 x 3
Let’s start by looking at an invertible 3 x 3 matrix A:

a1; a2 i3
A= |an ax ax
31 Aaz2 ass

We need to remember two important properties of invertible matrices in what
follows:

1. If an n xn matrix B is invertible, it has n pivot positions (in particular,
it has no columns or rows which are all zero);

2. If B is invertible, any matrix we get by performing row operations on
B is still invertible (since we don’t change the number of pivots).

Since the first column of A is not the zero column, it has a nonzero entry;
we might as well assume that a;; # 0 (we can always do a row interchange
to make this true). Let’s perform some row operations on A: first multiply
rows 2 and 3 by aj; to get the matrix

ai1 a2 a3
A =
= [G11G21 Qai11G22 A11023| ,
a11a31 A11032 11433

then add —as; times row 1 to row 2, and —ag; times row 1 to row 3, to get

ail 12 @13
"
A" = | 0 ajaz — a2a21  a11a23 — a13a2
0  ajniaze — ajpas  ai1ass — a13as;

Now, A” is still invertible by our “two properties”, so it has a pivot position
in the second column; since aq; is already a pivot, this pivot position has to
lie in either the second or third rows. This means that either the (2,2) entry
or the (3,2) entry of A” is nonzero; we might as well assume that A%, # 0
(otherwise we could just interchange rows).

So we do to A” something similar to what we did in the beginning to A.
We multiply row 3 of A” by the (nonzero!) number ay;a95 — a2a91, then we
add the appropriate multiple of row 2 to row 3 to clear out the second entry



of row 3 (the “appropriate multiple”) here is aj1a3s — ajpas;. Rather than
work this calculation, we just show the result:

11 Q12 a13
n
A" = 0  ajia —agaz  annas — ajzas |
0 0 CLHA

where

A= (a11a22a33 - a11a23a32) - (012(121(133 - al2a23a31) + (a13(121a32 - a13a22a31)-

Note that A” is invertible (because A is), so A # 0.

We will define det A to be the number A above. This gives us a definition
of det for 3 x 3 matrices, and we see that det A # 0 when A is invertible.
We will soon see that the converse holds; that is, if det A # 0, then A is
invertible. First, we will cast A in a more illuminating form which will help
us guess a generalization to bigger matrices. Consider the 2 x 2 submatrix
of A obtained by deleting the first row and column of A; we denote this

submatrix by Aj;:
Ay = [QQQ CLQS} '

az2 Aass
Then det A1 = agoass — agsass. So the first term of A above is actually equal
to aqp det Aqq.
Similarly, if we let A5 denote the submatrix of A obtained by deleting
the first row and second column of A, and we let A;3 be defined similarly,
we have

det A=A= a11 det AH — Q12 det A12 + a3 det A13. (2)

2 Determinants for general matrices

Our philosophy for defining determinants will be inspired by the form (2).
We will give a “recursive” definition: the determinants of 3 x 3 matrices are
defined using determinants for 2 x 2 matrices as in (2); the determinants of
4 x 4 matrices are defined using determinants of 3 x 3 matrices; etc.

This definition will actually also encompass our previous definition for
det of a 2 x 2 matrix, as long as we set det [a] = q for a 1 x 1 matrix.

Definition 2.1. Let A = [aij] be an n x n matrix (this notation just means
that we will denote the entry which lies in the ith row and jth column of A



by a;;). If n =1, we define det A = ay;, the only entry of A. Otherwise, we
set

det A = aq det AH — a19 det A12 + ...+ (—1)1+”a1n det Aln

n

= Z(—1)1+ja1j det Alj-

j=1
Example 2.2. Let

O =N
= O W

Then we have

4 6 2 6 2 4
detA—l-det{O ZJ—Q-det{o 4}+3-det{0 O}

=1-16—-2-843-0=0.
Example 2.3. Let

w W =
_ o =

Then

30 00 0 3
detA—l-det{3 1}—1-det{0 1}+1-det{0 3}

=1-16—-2-84+3-0=0.

3 Cofactor expansion

Computing determinants of matrices bigger than 3 x 3 using the definition
rapidly gets horrible. A number of theorems and techniques exist to make
computing determinants of bigger matrices more palatable. The first we will
see is “cofactor expansion”.

Definition 3.1. Let A be an n x n matrix. Analogous to before, define A;;
to be the submatrix of A produced by deleting the ith row and jth column
of A. Then the (i, j) cofactor of A, denoted by Cj;, is defined by



Definition 3.1 gives us another way to rewrite the definition of a determi-
nant:

n
det A = Z alelj.
j=1

This notation is suggestive, and might lead you to believe that the determi-
nant could be computed using the cofactors C;; instead, where ¢ # 1. In fact,
this is true and more. We could have performed what is called a cofactor
expansion using any row or column of the matrix, as we see in the following
theorem:

Theorem 3.2. Let A be an n xn matriz. Then det A can be computed using
cofactor expansion along any row of the matriz. The cofactor expansion along
the ith row is given by

det A = CLﬂCil + aiQCiQ —+ ... CLmCm

On the other hand, we could also compute using cofactor expansion along any
column of the matriz. The cofactor expansion along the jth column is given
by

det A = alelj + ang’gj + ...+ ananj.

Justifying this theorem is somewhat complicated, so we will just take it
for granted without proof.

The cofactor expansion is quite useful for computing determinants in the
case that a given row or column has a lot of zero entries.

Example 3.3. Compute det A if

O N =
(el VENG BN )
SN Oy W
— N~



Performing cofactor expansion along the bottom row, we see

2 31 1 3 1 1 2 1
det A=0-det |5 6 1| —0-det |4 6 1| +0-det |4 5 1
2 2 2 2 2 2 2 2 2
1 2 3
+1-det |4 5 6
2 2 2
5 6 4 6 4 5
:0+0—|—0+1-(1det[2 2}—2det{2 2}—1—3[2 2])

=—2-2(—4) +3(-2) = 0.

We finish up today by showing a nice way to compute the determinants
of upper or lower triangular matrices.

Example 3.4. Using cofactor expansion on the first column of the following
3 X 3 matrix,

0 4

(o
@
+
o O W
SN W

3
1 =3-det {2 1}
4

=3-2-det[4] =3-2-4=24.
The same technique works on any upper or lower triangular matrix.

Theorem 3.5. If A is upper or lower triangular, then det A is equal to the
product of the entries on the main diagonal of A.

This theorem will be the basis of a simpler method of computing deter-
minants than the ones we have seen so far; we will discuss this in a future
lecture.



