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1 Decision Theoretic Setup: Loss, Posterior Risk, Bayes Action

Let A be action space and a ∈ A be an action. For example, in estimation problems, A is the set of real
numbers and a is a number, say a = 2 is adopted as an estimator of θ ∈ Θ. In other words, the inference
maker “took” the action a = 2 in estimating θ. In testing problems, the action space isA = {accept, reject}.
The action, as a function of observations is called a decision rule, or simply a rule. An example of a rule is
a(X1, . . . , Xn) = X̄ . Often, the rules are denoted by δ(X).

No action can be taken without potential losses. Statisticians are pessimistic creatures that replaced
nicely coined term utility to a more somber term loss, although, for all practical purposes, the loss is a
negative utility. The loss function is denoted by L(θ, a) and represents the payoff by a decision maker
(statistician) if he takes the action a ∈ A, and the real state of nature is θ ∈ Θ.

The loss function usually satisfies the following properties, L(a, a) = 0 and L(a, θ) is nondecreasing
function of |a− θ|.

Examples are squared error loss (SEL) L(θ, a) = (θ − a)2, absolute loss, L(θ, a) = |θ − a|, the 0-1
loss, L(θ, a) = 1(|a− θ| > m), etc.

The most common for estimation problems and mathematically easiest to work with is the SEL. The
expected SEL (frequentist risk) is linked with variance and bias of an estimator,

EX|θ(θ − δ(X))2 = V ar(δ(X)) + [bias(δ(X))]2.

where bias(δ(X) = EX|θδ(X))− θ.
One criticism of the SEL is that it grows fast (quadratically) when the error increases, thus severely

punishing the errors.

Example 1. The LINEX is defined as

L(θ, a) = exp{c(a− θ)} − c(a− θ)− 1, c ∈ R.

For c > 0, the loss function L(θ, a) is quite asymmetric about 0 with overestimation being more costly than
under-estimation. As |a − θ| → ∞, the loss L(θ, a) increases almost exponentially when a − θ > 0 and
almost linearly when a − θ < 0. For c < 0, the linearity-exponentiality phenomenon is reversed. Also,
when |a− θ| is very small, L(θ, a) is near c(a− θ)2/2.

Definition 1. Bayesian expected loss is the expectation of the loss function with respect to posterior measure,
i.e.,

ρ(a, π) = Eθ|XL(a, θ) =
∫

Θ
L(θ, a)π(θ|x)dθ.

The Expected Loss Principle. In comparing two actions a1 = δ1(X) and a2 =
δ2(X), after data X had been observed, preferred action is the one for which the
posterior expected loss is smaller. An action a∗ that minimizes the posterior expected
loss is called Bayes action.
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In the following example we find the Bayes actions (and Bayes rules) for several common loss functions.
Example 2. (i) If the loss is squared error, the Bayes action a∗ is found by minimizing

ϕ(a) = Eθ|X(θ − a)2 = a2 + (2Eθ|Xθ)a + Eθ|Xθ2.

Since ϕ′(a) = 0 for a = Eθ|Xθ and ϕ′′(a) = 2 < 0, the posterior mean a∗ = Eθ|Xθ is the Bayes action.

(ii) Recall that
(∫ B(x)

A(x) φ(x, t)dt
)′

=
∫ B(x)
A(x) φ′(x, t)dt + φ(x,B(x))B′(x)− φ(x,A(x))A′(x), and that

the median,m, of random variable X is defined as P (X ≥ m) ≥ 1/2 and P (X ≤ m) ≥ 1/2.
Assume the absolute loss.

ϕ(a) = Eθ|X |θ − a| =
∫

θ≥a
(θ − a)π(θ|X)dθ +

∫

θ≤a
(a− θ)π(θ|X)dθ

=
∫ ∞

a
(θ − a)π(θ|X)dθ +

∫ a

−∞
(a− θ)π(θ|X)dθ.

Then,

ϕ′(a) = −
∫ ∞

a
π(θ|X)dθ + 0− 0 +

∫ a

−∞
π(θ|X)dθ + 0− 0

= −P θ|X(θ ≥ a) + P θ|X(θ ≤ a) = 0.

The value of a for which P θ|X(θ ≥ a) = P θ|X(θ ≤ a) is the median of the posterior distribution.
Since ϕ′′(a) = 2φ(a|X) > 0, the median minimizes the ϕ(a).

(iii) Recall that a number b is said to be a pth percentile (quantile) of a distribution of a random variable
X if P (X ≤ b) ≥ p and P (X ≥ b) ≥ 1− p.

Let the loss be

L(θ, a) =
{

K1(θ − a), θ ≥ a
K2(a− θ), θ < a

This is a slight generalization of absolute error loss (K1 = K2 = 1). By mimicking (ii) we arrive to
condition K1P

θ|X(θ ≥ a) = K2P
θ|X(θ ≤ a) Thus, P θ|X(θ ≤ a) = K1/K2[1−P θ|X(θ ≤ a)] By solving

this equation, we obtain that P θ|X(θ ≤ a) = K1/(K1 + K2), i.e., the Bayes action a∗ is K1/(K1 + K2)-
percentile of the posterior distribution.

(iv) An interval of length 2c, say (b − c, b + c), is said to be a modal interval of length 2c for the
distribution of a random variable X , if P (b − c ≤ X ≤ b + c) takes on its maximum value out of all such
intervals. For the loss function

L(θ, a) =
{

0, |θ − a| ≤ c
1, else

=
{

0, a− c ≤ θ ≤ a + c
1, else

the probability P θ|X(a−c ≤ θ ≤ a+c) is minimized if a is chosen to be the midpoint of the modal interval
of length 2c. Thus, the Bayes action a∗ is the midpoint of the modal interval of length 2c of the posterior.

Assume that c → 0. Then the limiting case of the above loss is hit-or-miss loss,

L(θ, a) = 1(θ 6= a).

If the posterior is unimodal, the limiting Bayes action is a∗ =argmaxθπ(θ|X), the MAP rule. Of course di-
rect minimization of “hit-or-miss” loss is impossible for absolutely continuous posteriors since the integrals
are taken over a singleton set and such sets have posterior measure 0.
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2 Bayes Principle in the Frequentist Decision Theoretic Setup

Let X be a random variable whose distribution is in {Pθ, θ ∈ Θ}, a family which is indexed by a parameter
(random variable) θ. We put on frequentist hat and make an inference about the parameter θ, given an
observation X . A solution is a decision procedure (decision rule) δ(x), that identifies particular inference
for each value of x that can be observed. Let, as in the Bayesian setup, A be the class of all possible
realizations of δ(x), i.e. actions. The loss function L(θ, a) maps Θ × A into the set of real numbers and
defines a cost to the statistician when he takes the action a and the true value of the parameter is θ. A risk
function R(θ, δ) characterizes the performance of the rule δ for each value of parameter θ ∈ Θ. The risk is
usually defined in terms of underlying loss function L(θ, a) as

R(θ, δ) = EX|θL(θ, δ(X)) =
∫

X
L(θ, δ(x))f(x|θ)dx.

Since the risk function is defined as an average loss with respect to a sample space, it is called the frequentist
risk. Let D be the collection of all measurable decision rules. There are several principles for assigning the
preference among the rules in D. We give now only the Bayes principle, other include minimax principle,
and Γ-minimax principle, minimax regret principle, etc., and we may be talking about them later in the
course if time permits.

Under the Bayes principle, the prior distribution π is specified on the parameter space Θ. Any rule δ is
characterized by its Bayes risk

r(π, δ) =
∫

R(θ, δ)π(dθ) = EθR(θ, δ).

The rule δπ that minimizes Bayes risk is called Bayes rule, i.e.

δπ = arg inf
δ∈D

r(π, δ).

The Bayes risk of the prior distribution π (Bayes envelope function) is

r(π) = r(π, δπ).

Name Bayes Name Frequentist
action a ∈ A rule δ(x) ∈ D
¯¯
_ Risk R(θ, δ(X)) = EX|θL(θ, δ(X))

posterior expected loss ρ(π, a) = Eθ|XL(θ, a) Bayes risk r(π, δ) = EθEX|θL(θ, δ(X))
Bayes action argminaρ(π, a) Bayes rule δ∗(x) =argminδ∈Dr(π, δ)

Since, by Fubini’s Theorem r(π, δ) = EθEX|θL(θ, δ(X)) = EXEθ|XL(θ, δ(X)) = EXρ(π, a(X)) is
minimized when ρ(π, a) is minimized, for any fixed x, δB(x) = a∗(x). This fact is true whenever r(π) is
finite.

This result links the conditional Bayesian and decision theoretic frequentist inference: the frequentist
Bayes rule conditional on X is the Bayes action.

In the terms of Bayes rule, when the loss is squared error, the Bayes rule is the posterior expectation,

δB(x) =

∫
Θ θf(x|θ)π(θ)dθ∫
Θ f(x|θ)π(θ)dθ

,
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more generally, if the loss is weighted squared error, L(θ, a) = ω(θ)(θ − a)2, the Bayes rule is

δB(x) =

∫
Θ ω(θ)θf(x|θ)π(θ)dθ∫
Θ ω(θ)f(x|θ)π(θ)dθ

,

According to a Bayes principle the rule δ1(X) is preferred to δ2(X) if r(π, δ1) < r(π, δ2). The fre-
quentists use Bayes principle to compare frequentist risks of the rules, R(θ, δ1) and R(θ, δ2). Analysis of
frequentist risk functions leads to various concepts of frequentist procedure choice: minimaxity, admissibil-
ity, unbiasedness, equivariance, etc. This will be revisited later in the course.

3 Exercises

1. Under the LINEX loss defined in Example 1 find the Bayes rule under the model X1, . . . , Xn ∼
N (θ, 1), θ ∝ 1.

2. If X|θ ∼ B(n, θ) and θ ∼ Be(α, β), find the Bayes rule under the loss

L(θ, a) =
(θ − a)2

θ(1− θ)
.

Be careful about the treatment of x = 0 and x = n.
3. If X|θ ∼ G(n/2, 2θ) and θ ∼ IG(α, β), find the Bayes rule under the loss

L(θ, a) =
(θ − a)2

θ2
.
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