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1 The Likelihood Principle

Likelihood principle concerns foundations of statistical inference and it is often invoked in arguments about
correct statistical reasoning.

Let f(x|θ) be a conditional distribution for X given the unknown parameter θ. For the observed data,
X = x, the function `(θ) = f(x|θ), considered as a function of θ, is called the likelihood function.

The name likelihood implies that, given x, the value of θ is more likely to be the true parameter than θ′

if f(x|θ) > f(x|θ′).

Likelihood Principle. In the inference about θ, after x is observed, all relevant
experimental information is contained in the likelihood function for the observed x.
Furthermore, two likelihood functions contain the same information about θ if they
are proportional to each other.

Remark. The maximum-likelihood estimation does satisfy the likelihood principle.

Figure 1: Leonard Jimmie Savage; Born: November 20, 1917, Detroit, Michigan; Died: November 1, 1971,
New Haven, Connecticut

The following example quoted by Lindley and Phillips (1976) is an argument of Leonard Savage dis-
cussed at Purdue Symposium 1962. It shows that the inference can critically depend on the likelihood
principle.

Example 1: Testing fairness. Suppose we are interested in testing θ, the unknown probability of heads for
possibly biased coin. Suppose,

H0 : θ = 1/2 v.s. H1 : θ > 1/2.
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An experiment is conducted and 9 heads and 3 tails are observed. This information is not sufficient to fully
specify the model f(x|θ). A rashomonian analysis follows:

• Scenario 1: Number of flips, n = 12 is predetermined. Then number of heads X is binomial B(n, θ),
with probability mass function

Pθ(X = x) = f(x|θ) =
(

n

x

)
θx(1− θ)n−x =

(
12
9

)
θ9(1− θ)3 = 220 · θ9(1− θ)3.

For a frequentist, the p-value of the test is

P (X ≥ 9|H0) =
12∑

x=9

(
12
x

)
(1/2)x(1− 1/2)12−x =

1 + 12 + 66 + 220
212

= 0.073,

and if you recall the classical testing, the H0 is not rejected at level α = 0.05.
• Scenario 2: Number of tails (successes) α = 3 is predetermined, i.e, the flipping is continued until 3

tails are observed. Then, X - number of heads (failures) until 3 tails appear is Negative Binomial1 NB(3, 1−
θ),

f(x|θ) =
(

α + x− 1
α− 1

)
(1− θ)α[1− (1− θ)]x =

(
3 + 9− 1

3− 1

)
(1− θ)3θ9 = 55 · θ9(1− θ)3.

For a frequentist, large values of X are critical and the p-value of the test is

P (X ≥ 9|H0) =
∞∑

x=9

(
3 + x− 1

2

)
(1/2)x(1/2)3 = 0.0327.

since
∑∞

x=k

(
2+x

2

)
1
2x = 8+5k+k2

2k .
The hypothesis H0 is rejected, and this change in decision not caused by observations.
According to Likelihood Principle, all relevant information is in the likelihood `(θ) ∝ θ9(1 − θ)3, and

Bayesians could not agree more!
Edwards, Lindman, and Savage (1963, 193) note: The likelihood principle emphasized in Bayesian

statistics implies, among other things, that the rules governing when data collection stops are irrelevant to
data interpretation. It is entirely appropriate to collect data until a point has been proven or disproven, or
until the data collector runs out of time, money, or patience.

2 Sufficiency

Sufficiency principle is noncontroversial, and frequentists and Bayesians are in agreement. If the inference
involving the family of distributions and parameter of interest allows for a sufficient statistic then the suffi-
cient statistic should be used. This agreement is non-philosophical, it is rather a consequence of mathematics
(measure theoretic considerations).

1Let p be the probability of success in a trial. The number of failures in a sequence of trials until rth success is observed is
Negative Binomial NB(r, p) with probability mass function

P (X = x) =

 
r + x− 1

r − 1

!
pr(1− p)x, x = 0, 1, 2, . . .

For r = 1 the Negative Binomial distribution becomes the Geometric distribution, NB(1, p) ≡ G(p).
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Suppose that a distribution of random variable X depends on the unknown parameter θ. A statistics
T (X) is sufficient if the conditional distribution of X given T (X) = t is free of θ.

The Fisher-Neyman factorization lemma states that the likelihood can be represented as

`(θ) = f(x|θ) = f(x)g(T (x), θ),

Example. Let X1, . . . , Xn is a sample from uniform U(0, θ) distribution with the density f(x|θ) = 1
θ1(0 ≤

x ≤ θ). Then

`(θ) =
n∏

i=1

f(Xi|θ) =
1
θn

1(0 ≤ min
i
{Xi})1(max

i
{Xi} ≤ θ)

The statistics T = maxi{Xi} is sufficient. Here, f(x) = 1(0 ≤ mini{xi}) and g(T, θ) = 1
θn 1(mini{xi} ≤

θ).

If the likelihood principle is adopted, all inference about θ should depend on sufficient statistics since
`(θ) ∝ g(T (x), θ).

Sufficiency Principle. Let the two different observations x and y have the same
values T (x) = T (y), of a statistics sufficient for family f(·|θ). Then the inferences
about θ based on x and y should be the same.

3 Conditionality Perspective

Conditional perspective concerns reporting data specific measures of accuracy. In contrast to the frequentist
approach, performance of statistical procedures are judged looking at the observed data. The difference in
approach is illustrated in the following example.

Example 2. Consider estimating θ in the model

Pθ(X = θ − 1) = Pθ(X = θ + 1), θ ∈ R,

on basis of two observations, X1 and X2.
The procedure suggested is

δ(X) =
{

X1+X2
2 , if X1 6= X2

X1 − 1, if X1 = X2

To a frequentist, this procedure has confidence of 75% for all θ, i.e., P (δ(X) = θ) = 0.75.
The conditionalist would report the confidence of 100% if observed data in hand are different (easy to

check!) or 50% if the observations coincide. Does it make sense to report the preexperimental accuracy
which is known to be misleading after observing the data?

Conditionality Principle. If an experiment concerning the inference about θ is cho-
sen from a collection of possible experiments, independently of θ, then any experi-
ment not chosen is irrelevant to the inference.
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Example: [From Berger (1985), a variant of Cox (1958) example.] Suppose that a substance to be analyzed
is to be sent to either one of two labs, one in California or one in New York. Two labs seem equally equipped
and qualified and a coin is flipped to decide which one will be chosen. The coin comes up tails, denoting that
California lab is to be chosen. After the results are returned back and report is to be written, should report
take into account the fact that coin did not land up heads and that New York laboratory could have been
chosen. Common sense and conditional view point say NO, but the frequentist approach calls for averaging
over all possible data, even the possible New York data.

The conditionality principle makes clear the implication of the likelihood principle that any inference
should depend only on the outcome observed and not on any other outcome we might have observed and
thus sharply contrasts with the method of likelihood inference from the Neyman-Pearson, or more generally
from a frequentist, approach. In particular, questions of unbiasedness, minimum variance and risk, consis-
tency, the whole apparatus of confidence intervals, significance levels, and power of tests, etc., violate the
conditionality principle.

Example 1 (continued): Testing fairness. Here is yet another scenario that will not impress a conditional-
ist:

• Scenario 3: Another coin (not the coin for which θ is to be tested) with probability of heads equal to
ξ (known) was flipped. If heads were up, an experiment as in the Scenario 1 was performed and if tail was
up, the Scenario 2 was used. The number of heads in experiment was 9 and the number of tails observed
was 3.

Can you design ξ so that p-value of the test matches exactly 5%?
However, even the conditionalist agrees that the following scenario yields different evidence about θ

than the Scenarios 1-3. The selection of the experiment depends on the parameters θ which is in violation
of the conditionality principle.

• Scenario 4: The coin for which θ is to be tested was pre-flipped to determine what kind of experiment
is to be performed. If the coin was heads up, an experiment as in the Scenario 1 was performed and if it was
tails up, the Scenario 2 was used. The number of heads in the subsequent experiment was 9 and the number
of tails observed was 3, and the initial flip to specify the experiment was not counted.

The following result establishes equivalence between likelihood principle and conjunction of sufficiency
and conditionality principles.

Birnbaum (1962) Sufficiency Principle + Conditionality Principle ≡ Likelihood
Principle

Berger (1985), Berger and Wolpert (1988), Robert (2001) have additional discussion and provide more
examples. The proof of Birnbaum theorem can be found in Robert (2001) pages 18-19.

4 Some Sins of Being non-Bayesian

Thou shalt not integrate with respect to sample space. A perfectly valid hypothesis
can be rejected because the test failed to account for unlikely data that had not been
observed...
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The Lindley Paradox.2
Suppose ȳ|θ ∼ N(θ, 1/n). We wish to test H0 : θ = 0 vs the two sided alternative. Suppose a Bayesian

puts the prior P (θ = 0) = P (θ 6= 0) = 1/2, and in the case of alternative, the 1/2 is uniformly spread over
the interval [−M/2,M/2].

Suppose n = 40000 and ȳ = 0.01 are observed, so
√

n ȳ = 2.
• Classical statistician rejects H0 at level α = 0.05.
• We will show that posterior odds in favor of H0 are 11 if M = 1, so Bayesian statistician strongly

favors H0.

Ten in a row. Consider testing θ - the unknown probability of getting a correct answer. H0 : θ = 1/2
corresponds to guessing. The alternative H1 : θ > 1/2 corresponds to a “possession of knowledge, ability,
or ESP.”

• A lady who adds milk to her tea, claims to be able to tell whether the tea or the milk was poured to the
cup first. In all 10 trials conducted to test this she is correct in determining what was poured first.

• A music expert claims to be able to distinguish a page of Haydn score from a page of Mozart score. In
all 10 trials conducted to test this he makes correct determination each time.

• A drunken friend claims to be able to predict result of a fair coin flip. In all 10 trials conducted to test
this he is correct each time.

In all 3 situations the one-sided p-value is 2−10 and the hypothesis H0 : θ = 1/2 is rejected. We will
return to this bullet later with a Bayesian alternative.

Probability of heads. A coin is biased and the probability of heads θ is of interest. The coin is flipped
4 times and 4 tails are obtained. The frequentist estimate is θ̂ = 0. More sensible Bayes solution will be
proposed later.

More sins to follow:).

5 Exercises

1. Let X1, . . . , Xn be Bernoulli Ber(p) sample. Show that T (X) =
∑

i Xi is sufficient by demonstrating
that X|T = t is discrete uniform on space of all n-tuples x = (x1, . . . , xn), xi = 0 or 1, such that

∑
i xi = t

with probabilities
(
n
t

)−1
, and thus independent of p.

2. Let X1, . . . , Xn be a sample from the exponential distribution E(θ). Show that
∑

Xi is sufficient by
demonstrating that the conditional distribution of X1, . . . , Xn given

∑
Xi = t is free of θ. Use the fact that∑

Xi is Gamma.

3. The Two-Envelope Paradox. Here is “paradox” coming from a subtle use of conditional reasoning at
the place where unconditional reasoning is needed.

I am presented with two envelopes A and B, and told that one contains twice as much money as
the other. I am given envelope A, and offered the options of keeping envelope A or switching
to B. What should I do? I reason: (i) For any x, if I knew that A contained x, then the odds are
even that B contains either 2x or x/2, so the expected amount in B would be 5x/4. So (ii) for

2Lindley, D. V. (1957). A Statistical Paradox, Biometrika, 44, 187–192.
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all x, if I knew that A contained x, I would have an expected gain in switching to B. So (iii) I
should switch to B.

Discuss. Discuss the following scenarios as well:

Scenario 1: After selecting the envelope A, I am told that one of the envelopes A or B contains 20$. Should
I switch?

Scenario 2: After selecting the envelope A, I am told that the envelope A contains 20$. Should I switch?

Scenario 3: After selecting the envelope A, I am told that the envelope B contains 20$. Should I switch?
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