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(7) Suppose that for a single-serve queue with exponential arrivals and exponential service distributions, the arrival rate A

suddenly doubles to 2\, while the service rate p remains unchanged. Suppose also that the ratio %, which was

1

3, 18

now

%. How does the average time spent in the queue change, and how does the average number of units in the queue change?

Solution:

i) For the average time spent in the queue: let W) be the waiting time in line before the doubling of A. Let Ws) be the

waiting time after the doubling of A\. T
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In order for the queue not to explode, we must have p > 2X. Therefore
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queue will increase by a factor of

— 2\
o) relative to W.

> 1, so the average time spent in the

ii) For the average number of units in the queue: let Ly be the length of the line before the doubling of A. Let Loy be

the waiting time after the doubling of A. Also, let n be the number of people in the system.Then,
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We know that P(Ly = 0) = pg + p1 and P(Ly =1) = pj41, for I > 0 i.e., there are [ + 1 people in the system so that

one is being serve and [ are in line. We can compute the expected value of this random variable:




Replacing for the ratio %

The same equation holds for E[Ls,], we only have to replace the appropriate ratio % =3z
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S1-P(Ly=1) by definition of expected value
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Even tough the arrival rate A only doubled, the average length of the queue grew by a factor of 8 since:
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So the new average length is eight times longer than the previous one.



