M447 - Mathematical Models/Applications 1 - Homework 2

Enrique Areyan September 4, 2014

Chapter 2, Section 2.5

(8) In the situation discussed in Example 2.20, the largest eigenvalue, λ_0 , of the matrix of vital rates depends on the survival rate s_1 . Graph λ_0 as a function of s_1 for $.05 \le s_1 \le .2$. Also, determine the long-run fraction of the population in the adult stratum for the same range of values s_1 .

Solution: The following code in Mathematica does the job: to get the graph of λ_0 as a function of s

Plot [getEigenValue [s], $\{s, 0.05, 0.2\}$]

Next, to find the long-run fraction of the population in the adult stratum we can use the function:

```
\begin{array}{l} longRunAdultFraction [s\_] := Module [\{M,\ V\},\\ M = \{\ \{0,\ 0,\ 10,\ 25\},\ \{s\,,\ 0,\ 0,\ 0\},\ \{0,\ .2\,,\ .2\,,\ 0\},\ \{0,\ 0,\ .4\,,\ .2\}\};\\ V = Eigenvectors [M];\\ V[[1]][[4]]\ /\ Plus\ @@\ V[[1]]\\ |\ \end{array}
```

Plot [longRunAdultFraction[s], {s, .05, .2}]

This function makes sense: if we increase the proportion of eggs and hatchlings, eventually these will make a larger proportion of the population and so the fraction in the adult stratum will decrease.