# - M436 - Homework Assignment 4 -

Due:Friday, September 26, in class. Each problem is worth 20 points. Please show all your work.

### Exercise 1

Let  $D_1 v = 2\left(v - \begin{pmatrix} 1\\1 \end{pmatrix}\right) + \begin{pmatrix} 1\\1 \end{pmatrix}$  be a dilation in  $\mathbb{R}^2$ . Find another dilation  $D_2 v = \lambda(v-p) + p$  such that  $(D_2 \circ D_1)v = v + \begin{pmatrix} 1\\0 \end{pmatrix}$ .

### Exercise 2

The following puzzle is played on the set of points  $\mathbb{Z}^2$  with integer coordinates in  $\mathbb{R}^2$ . The points  $p_1 = (0,0)$ ,  $p_2 = (1,-1)$ , and  $p_3 = (-2,1)$  are 'mirrors', and the player has a peg placed on some point. A move consists of jumping with the peg across any of the three mirrors. For instance, if the peg is at the point (1,0), we can jump to (-1,0), (1,-2), or (5,2), depending on the mirror we use. Find a sequence of jumps that takes a peg at position (1,0) to position (1,2) that is different from the solution below.

Another formulation of the problem asks to find a word R in  $R_1$ ,  $R_2$ ,  $R_3$ , that, when interpreted as a composition of the affine transformations  $R_i(v) = -(v - p_i) + p_i$ , becomes the translation  $R(v) = v + \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ .



Figure 1 A solution to the jumping puzzle

## Exercise 3

Consider the projective plane  $\mathbf{F}_3 P^2$  over the field with 3 elements. Show that the two triangles with vertices at  $p_1 = (1:1:0)$ ,  $p_2 = (1:2:1)$ ,  $p_3 = (0:2:1)$  and  $q_1 = (1:0:0)$ ,  $q_2 = (1:1:1)$ ,  $q_3 = (0:0:1)$  are in perspective centrally. Then verify Desargue's theorem by computing the three intersections of corresponding lines (like  $p_1q_2$  with  $p_2q_1$ ), and showing that they are collinear.

## Exercise 4

Show that in the projective plane  $\mathbf{F}_3 P^2$  over the field with 3 elements, the set of points and lines form a configuration of type  $13_4$ .



Figure 2 Hesse configuration

### Exercise 5

Show that the Hesse configuration can be realized in the complex projective plane  ${\bf C}P^2$  by writing

$$\begin{aligned} p_{00} &= (0; -1; 1) & p_{01} = (-1; 0; 1) & p_{02} = (-1; 1; 0) \\ p_{10} &= (0; y; 1) & p_{11} = (x; 0; 1) & p_{12} = (y; 1; 0) \\ p_{20} &= (0; x; 1) & p_{21} = (y; 0; 1) & p_{22} = (x; 1; 0) \end{aligned}$$

for suitable complex numbers  $x \neq y$ .