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(Ex. 1) Let D1v = 2
(
v −

(
1
1

))
+
(
1
1

)
be a dilation in R2. Find another dilation D2v = λ(v−p)+p such that (D2 ◦D1)v = v+

(
1
0

)
.

Solution: First note that we can write D1 differently as D1(v) = 2
(
v −

(
1
1

))
+
(
1
1

)
= 2v −

(
2
2

)
+
(
1
1

)
= 2v −

(
1
1

)
.

Now,

(D2 ◦D1)(v) = D2(D1(v)) = D2

[
2v −

(
1

1

)]
= v +

(
1

0

)
By inspection we can deduce that λ = 1/2, since the coefficient of v is 2 and we want it to be 1. This observation reduces
our computation to:

D2

[
2v −

(
1

1

)]
=

1

2

[
2v −

(
1

1

)]
+

1

2
p = v − 1

2

(
1

1

)
+

1

2
p =

Letting p =
(
p1

p2

)
= v − 1

2

(
1

1

)
+

1

2
p = v − 1

2

(
1

1

)
+

1

2

(
p1
p2

)
= v +

1

2

[(
p1
p2

)
−
(
1

1

)]
Therefore,

1

2

[(
p1
p2

)
−
(
1

1

)]
=

(
1

0

)
=⇒ 1

2
p1 −

1

2
= 1 and

1

2
p2 −

1

2
= 0 =⇒ p1 = 3 and p2 = 1

Our dilation D2 is given by D2(v) =
1

2

(
v −

(
3

1

))
+

(
3

1

)
. We can check that indeed this is the case:

(D2 ◦D1)(v) = D2(D1(v)) = D2

[
2
(
v −

(
1
1

))
+
(
1
1

)]
=

1

2

[
2
(
v −

(
1
1

))
+
(
1
1

)
−
(
3
1

)]
+
(
3
1

)
= v +

1

2

[
−
(
2
2

)
+
(
1
1

)
−
(
3
1

)]
+
(
3
1

)
= v +

1

2

[(−4
−2

)]
+
(
3
1

)
= v −

(
2
1

)
+
(
3
1

)
= v +

(
1
0

)
(Ex. 2) The following puzzle is played on the set of points Z2 with integer coordinates in R2. The points p1 = (0, 0), p2 = (1,−1),

and p3 = (−2, 1) are ’mirrors’, and the player has a peg placed on some point. A move consists of jumping with the peg
across any of the three mirrors. For instance, if the peg is at the point (1, 0), we can jump to (−1, 0), (1,−2), or (−5, 2),
depending on the mirror we use. Find a sequence of jumps that takes a peg at position (1, 0) to position (1, 2) that is
different from the solution below.

Another formulation of the problem asks to find a word R in R1, R2, R3, that, when interpreted as a composition
of the affine transformations Ri(v) = −(v − pi) + pi, becomes the translation R(v) = v +

(
0
2

)
Solution: I found two solutions given by (using the notation of words R): R1R3R1R2R1R2 and R1R2R1R3R1R2.
Note that these are different from the giving solution since that solution is given by R1R2R1R2R1R3.

To show that these two solutions work, let us write: Ri = −(v − pi) + pi = 2pi − v, i.e.:

R1(v) = 2

(
0

0

)
− v = −v; R2(v) = 2

(
1

−1

)
− v =

(
2

−2

)
− v; R3(v) = 2

(
−2
1

)
− v =

(
−4
2

)
− v

So that:

i) (R1R3R1R2R1R2)(v) = (R1R3R1R2R1)(
(

2
−2

)
− v) = (R1R3R1R2)(v −

(
2
−2

)
) = (R1R3R1)((

(
2
−2

)
− v +

(
2
−2

)
)) =

(R1R3R1)(
(

4
−4

)
− v) = (R1R3)(v −

(
4
−4

)
) = R1(

(−4
2

)
− v +

(
4
−4

)
) = R1(

(
0
−2

)
− v) = v −

(
0
−2

)
= v +

(
0
2

)
1



ii) (R1R2R1R3R1R2)(v) = (R1R2R1R3R1)(
(

2
−2

)
− v) = (R1R2R1R3)(v −

(
2
−2

)
) = (R1R2R1)(

(−4
2

)
− v +

(
2
−2

)
) =

(R1R2R1)(
(−2

0

)
− v) = (R1R2)(v −

(−2
0

)
) = (R1)(

(
2
−2

)
− v +

(−2
0

)
) = (R1)(

(
0
−2

)
− v) = v −

(
0
−2

)
= v +

(
0
2

)
(Ex. 3) Consider the projective plane F3P

2 over the field with 3 elements. Show that the two triangles with vertices at
p1 = (1 : 1 : 0), p2 = (1 : 2 : 1), p3 = (0 : 2 : 1) and q1 = (1 : 0 : 0), q2 = (1 : 1 : 1), q3 = (0 : 0 : 1) are in perspective
centrally. Then verify Desargue’s theorem by computing the three intersections of corresponding lines (like p1p2 with
q1q2), and showing that they are collinear.

Solution: To show that the two triangles are in perspective centrally, let us compute the intersection of the following
lines: p1q1 and p2q2, p1q1 and p3q3, p2q2 and p3q3.

p1q1 and p2q2 : p1 × q1 = (0, 0,−1) =⇒ −z = 0 ⇐⇒ z = 0 =⇒ p1q1 = {(x : y : 0) ∈ F3P
2}

p2 × q2 = (1, 0,−1) =⇒ x− z = 0 ⇐⇒ x = z =⇒ p2q2 = {(x : y : x) ∈ F3P
2}

The intersection is given by z = 0 = x =⇒ (0 : y : 0), a representative point would be (0 : 1 : 0)

p1q1 and p3q3 : We already know that p1q1 = {(x : y : 0) ∈ F3P
2}

p3 × q3 = (2, 0, 0) =⇒ 2x = 0 ⇐⇒ x = 0 =⇒ p3q3 = {(0 : y : z) ∈ F3P
2}

The intersection is given by z = 0 and x = 0 =⇒ (0 : y : 0), a representative point would be (0 : 1 : 0)

p2q2 and p3q3 : We already know that p2q2 = {(x : y : x) ∈ F3P
2}

We already know that p3q3 = {(0 : y : z) ∈ F3P
2}

The intersection is given by z = x = 0 =⇒ (0 : y : 0), a representative point would be (0 : 1 : 0)

Showing that the point (0 : 1 : 0) is the center of perspective, i.e., the two triangles are in perspective centrally.

Now, let us verify Desargue’s theorem: first find rij the intersection of pipj and qiqj for i 6= j

r12: p1 × p2 = (1,−1, 1) =⇒ p1p2 = {(x : y : z) ∈ F3P
2 : x− y + z = 0}

q1 × q2 = (0,−1, 1) =⇒ q1q2 = {(x : y : y) ∈ F3P
2}

Hence, the intersection is given by x− y + z = 0 and y = z =⇒ x− z + z = 0 ⇐⇒ x = 0, so

r12 = (0 : 1 : 1)

r13: p1 × p3 = (1,−1, 2) =⇒ p1p3 = {(x : y : z) ∈ F3P
2 : x− y + 2z = 0}

q1 × q3 = (0,−1, 0) =⇒ q1q3 = {(x : 0 : z) ∈ F3P
2}

Hence, the intersection is given by x− y + 2z = 0 and y = 0 =⇒ x− 0 + 2z = 0 ⇐⇒ x = −2z, so

r13 = (−2 : 0 : 1)

r23: p2 × p3 = (0,−1, 2) =⇒ p2p3 = {(x : 2z : z) ∈ F3P
2}

q2 × q3 = (1,−1, 0) =⇒ q2q3 = {(x : x : z) ∈ F3P
2}

Hence, the intersection is given by y = 2z and x = y =⇒ x = y = 2z, so

r23 = (2 : 2 : 1)

Next, we can find the line through r12 and r13 by computing r12 × r13 = (1,−2, 2), so the line is

r12r13 = {(x : y : z) ∈ F3P
2 : x− 2y + 2z = 0}

Finally, note that r23 is in this line since it satisfies: 2− 2(2) + 2(1) = 2− 4 + 2 = 0, showing that they are collinear.

(Ex. 4) Show that in the projective plane F3P
2 over the field with 3 elements, the set of points and lines form a configuration

of type 134.

Solution: First, let us count how many points and lines are in the projective plane F3P
2. Let P = {points in F3P

2}.
Then, |P | = (3 · 3 · 3− 1)/2 = 26/2 = 13, because there are three choices for the first coordinates, three for the second
and three for the third. We discard the point (0 : 0 : 0) which is not in F3P

2. Finally, we divide by 2 because we counted
each point exactly twice, the repetition coming from the point being multiplied by 2.

Similarly, let L = {lines inF3P
2}. Then, |L| = (3 · 3 · 3 − 1)/2 = 26/2 = 13. In this case we know that a line is

2



given by a1x+ a2y+ a3z = 0, where a1, a2, a3 ∈ F3. Again, there are three choices for a1, three choices for a2 and three
choices for a3. Discard the choice a1 = a2 = a3 = 0. We over counted each line twice since we line given by (a1 : a2 : a3)
is exactly the same as the line given by (2a1 : 2a3 : 2a3).

Let us find each point and each line and show that in each line contains exactly 4 points and that each point is
concurrent with exactly 4 lines. P = {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (0 : 1 : 1), (1 : 0 : 1), (1 : 1 : 0), (0 : 1 : 2), (1 : 0 :
2), (1 : 2 : 0), (1 : 1 : 1), (1 : 1 : 2), (1 : 2 : 1), (2 : 1 : 1)} The set of lines can be interpreted as follow: if (x : y : z) ∈ P ,
then x+ y + z = 0 defines a line. For the points:

(0 : 0 : 1) is in the lines (1) x = 0, (2) y = 0, (3) x+ y = 0 and (4) x+ 2y = 0.

(0 : 1 : 0) is in the lines (1) x = 0, (2) z = 0, (3) x+ z = 0 and (4) x+ 2z = 0.

(1 : 0 : 0) is in the lines (1) y = 0, (2) z = 0, (3) y + z = 0 and (4) y + 2z = 0.

(0 : 1 : 1) is in the lines (1) x = 0, (2) y + 2z = 0, (3) x+ 2y + z = 0 and (4) x+ y + 2z = 0.

(1 : 0 : 1) is in the lines (1) y = 0, (2) x+ 2z = 0, (3) x+ y + 2z = 0 and (4) 2x+ y + z = 0.

(1 : 1 : 0) is in the lines (1) z = 0, (2) x+ 2y = 0, (3) x+ 2y + z = 0 and (4) 2x+ y + z = 0.

(0 : 1 : 2) is in the lines (1) x = 0, (2) y + z = 0, (3) x+ y + z = 0 and (4) 2x+ y + z = 0.

(1 : 0 : 2) is in the lines (1) y = 0, (2) x+ z = 0, (3) x+ y + z = 0 and (4) x+ 2y + z = 0.

(1 : 2 : 0) is in the lines (1) z = 0, (2) x+ y = 0, (3) x+ y + z = 0 and (4) x+ y + 2z = 0.

(1 : 1 : 1) is in the lines (1) x+ y + z = 0, (2) x+ 2y = 0, (3) x+ 2z = 0 and (4) y + 2z = 0.

(1 : 1 : 2) is in the lines (1) x+ 2y = 0, (2) x+ z = 0, (3) y + z = 0 and (4) x+ y + 2z = 0.

(1 : 2 : 1) is in the lines (1) x+ y = 0, (2) y + z = 0, (3) x+ 2z = 0 and (4) x+ 2y + z = 0.

(2 : 1 : 1) is in the lines (1) x+ y = 0, (2) x+ z = 0, (3) y + 2z = 0 and (4) 2x+ y + z = 0.

Now, for the lines:

x = 0 contains the points: (1) (0 : 0 : 1),(2) (0 : 1 : 0), (3) (0 : 1 : 1) and (4) (0 : 1 : 2).

y = 0 contains the points: (1) (0 : 0 : 1),(2) (1 : 0 : 0), (3) (1 : 0 : 1) and (4) (1 : 0 : 2).

z = 0 contains the points: (1) (0 : 1 : 0),(2) (1 : 0 : 0), (3) (1 : 1 : 0) and (4) (1 : 2 : 0).

x+ y = 0 contains the points: (1) (0 : 0 : 1), (2) (1 : 2 : 1),(3) (1 : 2 : 0) and (4) (2 : 1 : 1).

x+ z = 0 contains the points: (1) (0 : 1 : 0), (2) (1 : 0 : 2), (3) (1 : 1 : 2) and (4) (2 : 1 : 1).

y + z = 0 contains the points: (1) (1 : 0 : 0), (2) (0 : 1 : 2), (3) (1 : 1 : 2) and (4) (1 : 2 : 1).

x+ 2y = 0 contains the points: (1) (0 : 0 : 1), (2) (1 : 1 : 0), (3) (1 : 1 : 1) and (4) (1 : 1 : 2).

x+ 2z = 0 contains the points: (1) (0 : 1 : 0), (2) (1 : 0 : 1), (3) (1 : 2 : 1) and (4) (1 : 1 : 1).

y + 2z = 0 contains the points: (1) (1 : 0 : 0), (2) (0 : 1 : 1), (3) (1 : 1 : 1) and (4) (2 : 1 : 1).

x+ y + z = 0 contains the points: (1) (0 : 1 : 2), (2) (1 : 0 : 2), (3) (1 : 2 : 0) and (4) (1 : 1 : 1).

x+ y + 2z = 0 contains the points: (1) (0 : 1 : 1), (2) (1 : 0 : 1), (3) (1 : 2 : 0) and (4) (1 : 1 : 2).

x+ 2y + z = 0 contains the points: (1) (0 : 1 : 1), (2) (1 : 1 : 0), (3) (1 : 0 : 2) and (4) (1 : 2 : 1).

2x+ y + z = 0 contains the points: (1) (1 : 0 : 1), (2) (1 : 1 : 0), (3) (0 : 1 : 2) and (4) (2 : 1 : 1).

(Ex. 5) Show that the Hesse configuration can be realized in the complex projective plane CP 2 by writing

p00 = (0 : −1 : 1) p01 = (−1 : 0 : 1) p02 = (−1 : 1 : 0)
p10 = (0 : y : 1) p11 = (x : 0 : 1) p12 = (y : 1 : 0)
p20 = (0 : x : 1) p21 = (y : 0 : 1) p22 = (x : 1 : 0)

for suitable complex numbers x 6= y

Solution: If the Hesse configuration is to be realized in the complex projective plane, then the points p10, p11 and
p12 need to be collinear. Using the determinant condition for collinearity of points we get that:

det

0 y 1
x 0 1
y 1 0

 = 0 ⇐⇒ −y
(
x 1
y 0

)
+

(
x 0
y 1

)
= 0 ⇐⇒ −y(−y) + x = 0 ⇐⇒ y2 + x = 0
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Likewise, the points p20, p21 and p22 need to be collinear and so:

det

0 x 1
y 0 1
x 1 0

 = 0 ⇐⇒ −x
(
y 1
x 0

)
+

(
y 0
x 1

)
= 0 ⇐⇒ −x(−x) + y = 0 ⇐⇒ x2 + y = 0

Also, the points p10, p01 and p22 need to be collinear:

det

 0 y 1
−1 0 1
x 1 0

 = 0 ⇐⇒ −y
(
−1 1
x 0

)
+

(
−1 0
x 1

)
= 0 ⇐⇒ −y(−x)− 1 = 0 ⇐⇒ xy − 1 = 0

Again, the points p20, p01 and p12 need to be collinear:

det

 0 x 1
−1 0 1
y 1 0

 = 0 ⇐⇒ −x
(
−1 1
y 0

)
+

(
−1 0
y 1

)
= 0 ⇐⇒ −x(−y)−1 = 0 ⇐⇒ xy−1 = 0 this implies x 6= 0, y 6= 0

Note that any other choice of three points pij satisfying the Hesse configuration, i.e., being collinear in the Hesse
configuration, will yield a zero determinant, providing no further information. Therefore, we have the following system: y2 + x = 0 =⇒ (−x2)2 + x = 0 =⇒ x4 + x = 0 =⇒ x(x3 + 1) = 0

x2 + y = 0 y = −x2
xy − 1 = 0


We need to find the solutions of x(x3 + 1) = 0 and then solve for y. The equation x(x3 + 1) = 0 implies that x = 0 OR
x3− 1 = 0. The solution x = 0 contradicts the equation xy− 1 = 0, so we discard this solution. The problem reduces to
finding all roots of the polynomial x3 + 1. Clearly, one root is −1 since, −13 + 1 = −1 + 1 = 0. Hence, the polynomial
x3 + 1 is divisible by (x+ 1), yielding: x3 + 1 = (x+ 1)(x2 − x+ 1).

Applying quadratic formula: x2 − x+ 1 = 0 ⇐⇒ x =
1±
√
1− 4

2
=

1±
√
3i

2
. Therefore,

x3 + 1 = (x+ 1)(x2 − x+ 1) = (x+ 1)(x−

(
1 +
√
3i

2

)
)(x−

(
1−
√
3i

2

)
)

Finally, we can solve for y :

i) If x = −1 then (−1)y − 1 = 0 ⇐⇒ y = −1. So x = y = −1. But we discard this solution since we need x 6= y.

ii) If x =

(
1 +
√
3i

2

)
then

(
1 +
√
3i

2

)
y − 1 = 0 ⇐⇒ y =

(
2

1 +
√
3i

)
=

(
2

1 +
√
3i

)(
1−
√
3i

1−
√
3i

)
=

(
1−
√
3i

2

)

Therefore, one complex solution is (x, y) =

(
1 +
√
3i

2
,
1−
√
3i

2

)

iii) If x =

(
1−
√
3i

2

)
then

(
1−
√
3i

2

)
y − 1 = 0 ⇐⇒ y =

(
2

1−
√
3i

)
=

(
2

1−
√
3i

)(
1 +
√
3i

1 +
√
3i

)
=

(
1 +
√
3i

2

)

Finally, another complex solution is (x, y) =

(
1−
√
3i

2
,
1 +
√
3i

2

)
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