— M436 — Homework Assignment 3 —

Due: Friday, September 19, in class.

Each problem is worth 20 points. Please show all your work.

Exercise 1

Show that for any rational number $q \in \mathbf{Q}$, there are two distinct points P_1 and P_2 with integer coordinates such that the line through P_1 and P_2 intersects the x-axis in (q, 0).

Exercise 2

Show that the set of pairs $\{(a,b) : a, b \in \mathbf{F}_3\}$ becomes a field by defining (a,b) + (a,b) = (a,b)(a'b') = (a + a', b + b') and $(a, b) \cdot (a'b') = (aa' - bb', ab' + a'b)$. If we write 1 = (1, 0)and i = (0, 1), we can also write a + bi = (a, b), and have the familiar identity $i^2 = -1$. Hint for the multiplicative inverse:

$$\frac{1}{(a,b)} = \frac{(a,-b)}{a^2 + b^2}$$

Why do we do not divide by 0? Does this also work if we replace \mathbf{F}_3 with \mathbf{F}_5 ?

Exercise 3

In this exercise, we will study the affine plane \mathbf{F}_3^2 .

- How many point are in F²₃?
 How many lines are in F²₃?
 How many lines are in F²₃ that pass through the origin (0,0)?
- 4. How many points lie on each line?

Exercise 4

In this exercise, we will study the special linear group $SL_2(\mathbf{F}_3)$.

- 1. How many 2×2 matrices with entries in \mathbf{F}_3 have rank 0?
- 2. How many 2×2 matrices with entries in \mathbf{F}_3 have rank 1?
- 3. How many 2×2 matrices with entries in \mathbf{F}_3 have rank 2?
- 4. How many elements are in $SL_2(\mathbf{F}_3)$?

Exercise 5

Show that in any affine plane \mathbf{F}^2 over a field \mathbf{F} , two lines are either equal, intersect in one point, or are disjoint and parallel. Instructions: Any line is given as a set $\{p + tv : t \in \mathbf{F}\}$ where $p \in \mathbf{F}^2$ is a point and $v \in \mathbf{F}^2$ is a non-zero direction vector. Two lines are parallel if they are given by proportional direction vectors. Show

- 1. If two lines are parallel and have at least one point in common, they are equal. It suffices that one line is contained in the other.
- 2. If two lines are non-parallel, they meet in precisely one point. Use that two independent vectors in \mathbf{F}^2 span \mathbf{F}^2 .