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All problems from Rudin, chapter 5 on differentiation pages 114-119.
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where C0, · · · , Cn are real constants, prove that the equation
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n = 0

has at least one real root between 0 and 1.

Proof: Let f(x) = C0x+ C1
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n+1 = 0 (by hypothesis)

Hence f(0) = f(1) = 0.

Now, let us apply the Mean Value Theorem by first checking that f satisfies its hypothesis on (0, 1):

(i) The function f : [0, 1] → R is continuos on [0, 1]. This is because f is a polynomial which we know is
continuos on its domain.

(ii) The function f is differentiable on (0, 1). Again, this is because f is a polynomial which we know is
differentiable on its domain.

∴ There exists x0 ∈ (0, 1) such that:

f(1)− f(0)
1− 0

= f ′(x0) ⇐⇒ f ′(x0) = f(1)− f(0) ⇐⇒ f ′(x0) = 0− 0 ⇐⇒ f ′(x0) = 0

But note that f ′(x) = C0 +C1x+ · · ·+Cn−1x
n−1 +Cnx

n, and by the above result we have found x0 ∈ (0, 1)
s.t:

C0 + C1x0 + · · ·+ Cn−1x
n−1
0 + Cnx

n
0 = 0

So x0 is one real root in (0, 1). Hence, we can conclude that the given equation has at least one real root.

(5) Suppose f is defined and differentiable for every x > 0, and f ′(x)→ 0 as x→ +∞.
Put g(x) = f(x+ 1)− f(x). Prove that g(x)→ 0 as x→ +∞

Proof: Let x ∈ R, x > 0. Let us apply the Mean Value Theorem by first checking that f satisfies its
hypothesis on (x, x+ 1):

(i) The function f : [x, x+1]→ R is continuos on [x, x+1]. This is because by hypothesis f is differentiable
for every x > 0 and by theorem 5.2 we know that a differentiable function on x must be continuos at x.

(ii) The function f is differentiable on (x, x+ 1). By hypothesis.

∴ For all x > 0, there exists y = y(x) ∈ (x, x+ 1) such that:

f(x+ 1)− f(x)
x+ 1− x

= f ′(y) ⇐⇒ f ′(y) = f(x+ 1)− f(x) = g(x) By hypothesis

So we can conclude that f ′(y) = g(x). Now, note that y ∈ (x, x+ 1) so that y > x. Therefore

lim
x→∞

y(x) =∞ (if x goes to infinity y must go to infinity because y > x)

But then,
lim
x→∞

g(x) = lim
x→∞

f ′(y) = 0 Since by hypothesis f ′(x)→ 0 as x→ +∞
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(17) Suppose f is a real, three times differentiable function on [−1, 1], such that

f(−1) = 0, f(0) = 0, f(1) = 1, f ′(0) = 0

Prove that f (3)(x) ≥ 3 for some x ∈ (−1, 1).
Note that equality holds for 1

2 (x
3 + x2).

Hint: Use Theorem 5.15, with α = 0 and β = ±1, to show that there exist s ∈ (0, 1) and t ∈ (−1, 0) s.t.:

f (3)(s) + f (3)(t) = 6

Proof: Following the hint, let us use theorem 5.15 with α = 0 and β = ±1.

(i) For α = 0 and β = 1, there exists s ∈ (0, 1) such that:

f(1) = P (1) +
f (3)(s)

3!
(1− 0)3, where: P (1) =
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0!
(1− 0)0 +

f (1)(0)

1!
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Hence,

f(1) =
f (0)(0)

0!
(1− 0)0 +

f (1)(0)

1!
(1− 0)1 +

f (2)(0)

2!
(1− 0)2 +
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Equivalently,

f(1) = f(0) + f (1)(0) +
f (2)(0)

2
+
f (3)(s)

6
· · · · · · · · · (∗)

(ii) For α = 0 and β = −1, there exists t ∈ (0, 1) such that:

f(−1) = P (−1)+f
(3)(t)

3!
(−1−0)3, where: P (−1) = f (0)(0)

0!
(−1−0)0+f

(1)(0)

1!
(−1−0)1+f

(2)(0)

2!
(−1−0)2

Hence,

f(−1) = f (0)(0)

0!
(−1− 0)0 +

f (1)(0)

1!
(−1− 0)1 +

f (2)(0)

2!
(−1− 0)2 +

f (3)(t)

3!
(−1− 0)3

Equivalently,

f(−1) = f(0)− f (1)(0) + f (2)(0)

2
− f (3)(t)

6
· · · · · · · · · (4)

Now consider (∗)− (4):

f(1)− f(−1) = f(0) + f (1)(0) + f(2)(0)
2 + f(3)(s)

6 −
(
f(0)− f (1)(0) + f(2)(0)

2 − f(3)(t)
6

)
⇐⇒

1− 0 = 2f (1)(0) + f(3)(s)
6 + f(3)(t)

6 because f(0) = f(−1) = 0 and f(1) = 1 by hypothesis ⇐⇒

1 = f(3)(s)
6 + f(3)(t)

6 because f (1)(0) = 0 by hypothesis ⇐⇒

6 = f (3)(s) + f (3)(t) multiplying by 6

Hence, there exists s ∈ (0, 1) and t ∈ (−1, 0) such that f (3)(s) + f (3)(t) = 6.

Finally, we know that either s or t or both are going to satisfy the result we want, for suppose (for a
contradiction) that both f (3)(s) < 3 and f (3)(t) < 3. Then f (3)(s)+ f (3)(t) < 3+3 = 6, a contradiction with
f (3)(s) + f (3)(t) = 6. Hence, f (3)(s) ≥ 3 or f (3)(t) ≥ 3, so f (3)(x) ≥ 3 for some x ∈ (−1, 1).
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