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(2.1) (i) True. By hypothesis if x ∈ S then x ∈ T . Also, if x ∈ T then x ∈ X. Hence, if x ∈ S then x ∈ X ⇐⇒ S ⊆ X

(ii) False. Since f ◦ g is not a well-defined function.

(iii) True. Since g ◦ f : X → Z is a well-defined function.

(iv) True. Because by definition X × ∅{(x, y) : x ∈ X and y ∈ ∅}, but nothing belong to the empty set. Hence,
X × ∅ = ∅

(v) True. Let h : imgf → imgf be defined as h(y) = y for all y ∈ imgf . Then g : X → imgf defined as g = h ◦ f
is a surjection since for every y ∈ imgf there is an x ∈ X such that y = f(x) (by definition of imgf). Moreover,
since j ◦ g : X → Y and f : X → Y and f(x) = (j ◦ g)(x) = j(g(x)) = j(y) = y, then j ◦ g = f .

(vi) False. let f : Z → N be defined as f(n) = |n| and g : N → Z be defined as g(n) = n. Then, f ◦ g : N → N is
a well-defined function such that f ◦ g = 1N, since: (f ◦ g)(n) = f(g(n)) = f(n) = |n| = n. However, f is not a
bijection since it is not injective. Indeed, f(2) = f(−2) = 2 but 2 6= −2.

(vii) False. Since 1
2 ,

2
4 ∈ Q are such that 1

2 = 2
4 , but f(

1
2 ) = 12 − 22 = 1− 4 = −3 6= f( 24 ) = 22 − 42 = 4− 16 = −12.

(viii) False. since (g ◦ f)(n) = g(f(n)) = g(n+ 1) = (n+ 1)2 = n2 + 2n+ 1 6= n(n+ 1)

(ix) True. The map conj : C → C defined as conj(a + ib) = a − ib is a bijection. It is injective since given
a1 + ib1, a2 + ib2 ∈ C, if conj(a1 + ib1) = conj(a2 + ib2) then a1 − ib1 = a2 − ib2 which by equality of complex
numbers means that a1 = a2 and b1 = b2 and hence, a1 + ib1 = a2 + ib2. It is surjective since for any a+ ib ∈ C
we can always take a− ib ∈ C such that f(a− ib) = ai+ b. Since conj is both injective and surjective it is also
bijective.

(2.3) (i) Proof of: (A ∪B)′ = A′ ∩B′

Let x ∈ (A ∪B)′ ⇐⇒ x ∈ X − (A ∪B) By definition of set complement
⇐⇒ x ∈ X and x /∈ A ∪B By definition of set difference
⇐⇒ x ∈ X and x /∈ A and x /∈ B By definition of membership in the union
⇐⇒ (x ∈ X and x /∈ A) and (x ∈ X and x /∈ B) Grouping statements
⇐⇒ x ∈ X −A and x ∈ X −B By definition of set difference
⇐⇒ x ∈ A′ and x ∈ B′ By definition of set complement
⇐⇒ x ∈ A′ ∩B′ By definition of intersection

(ii) Proof of: (A ∩B)′ = A′ ∪B′

Let x ∈ (A ∩B)′ ⇐⇒ x ∈ X − (A ∩B) By definition of set complement
⇐⇒ x ∈ X and x /∈ A ∩B By definition of set difference
⇐⇒ x ∈ X and (x /∈ A or x /∈ B) By definition of membership in the inter.
⇐⇒ (x ∈ X and x /∈ A) or (x ∈ X and x /∈ B) Grouping statements
⇐⇒ x ∈ X −A or x ∈ X −B By definition of set difference
⇐⇒ x ∈ A′ or x ∈ B′ By definition of set complement
⇐⇒ x ∈ A′ ∪B′ By definition of union

(2.7) (i) Let S ⊆ X and f : X → Y . First note that by definition f |S : S → Y and f ◦ i : S → Y . Given s ∈ S:

(f |S)(s) = f(s) by definition of f |S
= f(i(s)) by definition i(s) = s for all s ∈ S
= (f ◦ i)(s) function composition

Hence, for any s ∈ S, f |S(s) = f ◦ i(s). Therefore, f |S = f ◦ i
(ii) Consider the function f ′ : X → A defined as f ′ = j′ ◦ f , where j′ : Y → A defined as j′(y) = y. The claim is

that f ′ is a surjection since by hypothesis im(f) = A ⊆ Y and so every element of the codomain of f ′ has a
preimage. Moreover, if we consider the function j ◦ f ′ : X → Y , where j : A→ Y is the inclusion, i.e., j(a) = a
for all a ∈ A, then we can conclude that j ◦ f ′ = j ◦ (j′ ◦ f) = (j ◦ j′) ◦ f = 1Y ◦ f = f
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(2.9) Suppose that f : X → Y is a bijection with two inverses, i.e., there exists two functions f1 : Y → X and f2 : Y → X
such that:

f ◦ f1 = 1Y and f1 ◦ f = 1X

f ◦ f2 = 1Y and f2 ◦ f = 1X

But then:
f1 = f1 ◦ 1Y since 1Y is the identity function

= f1 ◦ (f ◦ f2) by definition of 1Y
= (f1 ◦ f) ◦ f2 since function composition is associative
= 1X ◦ f2 by definition of 1X
= f2 since 1X is the identity function

Hence, f1 = f2, which means that the inverse of f is unique.

(2.13) (i) We need only to show that f is injective if and only if f is surjective. The other implications follow from this,
i.e., f bijective ⇐⇒ f injective and f surjective.

(i)⇒ (iii) Suppose f is injective. Suppose by way of contradiction that f is not surjective. Then imgf ⊂ Y which
means that |imgf | < |Y | = n. Let p = |imgf |, then p < n. Take p different elements of X, say x1, x2, ..., xp.
Apply f to these elements to obtain f(x1), f(x2), ..., f(xp) ∈ imgf by definition. Since f is injective,
f(xi) 6= f(xj) for all 1 ≤ i, j ≤ p where i 6= j and hence, imgf = {f(x1), f(x2), ..., f(xp)}. But since we
only considered p elements in X and |X| = n > p, we know that there exists an element x ∈ X such that
x /∈ {x1, x2, ..., xp}. Apply f to this element to obtain f(x) ∈ imgf by definition of image. So f(x) = f(xi)
for 1 ≤ i ≤ p, which contradicts the fact that f is injective. Therefore, f must be surjective.

(iii)⇒ (i) Suppose f is surjective. Suppose by way of contradiction that f is not injective. Then, there exists
x1, x2 ∈ X such that f(x1) = f(x2) and x1 6= x2. Construct the set S = {x1, x2} ⊂ X. By definition of
set complementation we have that X = S ∪ S′, where S′ is the complement of S. Now, apply f to both
sides of the equation: f(X) = f(S ∪ S′). By definition of image we have that imgf = f(S ∪ S′). Since
f is surjective, imgf = Y and thus, Y = f(S ∪ S′). By exercise 2.16 (i), f(S ∪ S′) = f(S) ∪ f(S′), from
which we conclude that Y = f(S)∪ f(S′)⇒ since S and S′ are disjoint sets: |Y | = |f(S)|+ |f(S′)|. But by
constructing |f(S)| = 1 and |f(S)| ≤ n− 2. Hence, n = |Y | ≤ 1+n− 2 = n− 1, a contradiction. Therefore,
f is injective.

(ii) Let P be the set of pigeons. |P | = 11. Let H be the set of holes. |H| = 10. Define the map sits : P → H,
that assigns to each pigeon in the set P a hole in the set H. Since both |P | and |H| are finite sets such that
|P | 6= |H|, there exists no possible bijection between them. Since |P | > |H| and by (i), this means that the map
sits is not injective, i.e., there exists p1, p2 ∈ P such that sits(p1) = sits(p2) and p1 6= p2. This is the same
as stating that there is one hole containing more than one pigeon (two different pigeons sitting on the same hole).

(2.14) (i) Suppose both f and g are injective. Suppose also that, given x1, x2 ∈ X, (g ◦ f)(x1) = (g ◦ f)(x2). Then:

(g ◦ f)(x1) = (g ◦ f)(x2) ⇐⇒ g(f(x1)) = g(f(x2)) By definition of function composition
=⇒ f(x1) = f(x2) Since g is injective and f(x1), f(x2) ∈ Y
=⇒ x1 = x2 Since f is injective

Hence, g ◦ f is injective.
(ii) Suppose both f and g are surjective. Let z ∈ Z. Since g is surjective, there exists y ∈ Y such that g(y) = z.

Moreover, since f is surjective, there exists x ∈ X such that y = f(x). Replacing this equation into our previous
equation we obtain that g(f(x)) = z ⇐⇒ (g ◦ f)(x) = z. Therefore, given any z ∈ Z, we can always find a
x ∈ X such that (g ◦ f)(x) = z which means that g ◦ f is surjective.

(iii) If both f, g are bijective then by definition both f, g are injective and surjective. In (i) we proved that if both
f, g are injective then g ◦ f is also injective. In (ii) we proved that if f, g are surjective then g ◦ f is also
surjective. Therefore, if we assume that both f, g are bijective, then we can conclude that f, g are both injective
and surjective which by the aforementioned reasons means that g ◦ f is bijective as well.

(iv) Suppose g ◦ f is a bijection. This means that g ◦ f is injective and surjective.
Proof f is injective: Let x1, x2 ∈ X. Suppose that f(x1) = f(x2). We can apply g to both sides of this equation to obtain

g(f(x1)) = g(f(x2)), which by definition is the same as (g ◦f)(x1) = (g ◦f)(x2). But, since g ◦f is injective,
we conclude that x1 = x2, which means that f is injective.

Proof g is surjective: Let z ∈ Z. Since g ◦ f is a surjection, given z ∈ Z, there exists x ∈ X such that (g ◦ f)(x) = z ⇐⇒
g(f(x)) = z. Since f(x) ∈ Y , call it y = f(x). Then, for any element z ∈ Z it is true that there exists y
such that g(y) = z, just take y = f(x). Hence, g is a surjection.
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