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(1.46)
(i) False. Suppose for a contradiction that 6/2. Then, 2 = 6 - ¢ for some ¢ € Z. But, solving for ¢ we get that
q =3 & Z, a contradiction. Hence 21 6.

(ii) True. 6 =2-3 and 3 € Z. Hence, 2|6.

(iii) True. 0 =6-0 and 0 € Z. Hence, 6|0.

(iv) False. Suppose for a contradiction that 0/6. Then 6 = 0 - ¢ for some ¢ € Z. But, 6 = 0 ¢ = 0, which is clearly
a contradiction. Hence 01 6.

(v) True. 0 =0- g for some ¢ € Z, pick any ¢. Hence, 0]0.

(vi) True. Suppose for a contradiction that there is a ¢ > 1 € Z for which g.c.d(n,n + 1) = ¢. (I do not have to
worry about ¢ being negative because I know that at least 1 divides both n and n + 1 and hence 1 is a lower
bound on the g.c.d.). This would mean that ¢|n and ¢|n + 1, i.e., n = ¢- ¢ for some g € Z and n+ 1 =c-p for
some p € Z. Using these equations we obtain:

n+1 = c-p
c-q+1 = c¢-p ==
1 = c¢c-p—c-q
1 = cdp—9q
Now we have to consider three cases:
(i) p—¢=0. This would mean that 1 =c-0=0. A contradiction.
(ii) p — ¢ < 0. This would mean that 1 < 0. A contradiction.
(iii) p —¢ > 0. This would mean that 1 > 1. A contradiction.
Therefore, our assumption is wrong, and the case is that g.c.d(n,n + 1) = 1 for every natural number n.
(vii) False. Let n = 13, then n + 2 = 15 but g.c.d(13,15) =1 # 2.
(1.49)

fi=p+1=2+1=3
fo=p1-p2+1=2-3+1=7
fs=p1-p2-p3s+1=2-3-5+1=31
fi=pi-p2p3s-pa+1=2-3-5-7T+1=211
fs=p1-p2-p3-pa-ps+1=2-3-5-7-1141=2311
fe=p1-DP2-p3-pa-Ds-D6+1=2-3-5-7-11-13+1 = 30031

We can see that f1, fa, f3, f4 and f5 are all prime. But, fg = 30031 = 59 - 509, not prime. Hence, the smallest k is
k=6

(1.50) Let d,d’ € Z\{0}. Suppose that d|d’ and d’|d. Then, d' = d - q, for some q € Z and d = d’' - p for some p € Z. Replace
the former into the latter:

d=d-g-p=q-p=1=—¢g=1landp=10Rg=—-1and p=-1
Replacing these solutions back into the original equations, we obtain that d’ = +d.

(1.51) To prove the statement we can apply corollary 1.37. Let I = {x : {(* = 1}. First we need to check that the conditions
of the corollary hold for I.

(i) Since by definition (Y =1, then 0 € T

(ii) Let a,b € I. By definition of membership, (¢ = 1 = ¢*. Divide to obtain: 2—: = 1= (%% = 1, which means
that a—b el



(1.56)

(1.57)

(iii) Let a € I and g € Z. By definition of membership, (* = 1. Raise both sides of this equation to ¢: (¢*)? =17 =
(* =1, hence ag € I

The conditions of corollary 1.37 hold, therefore, there exists d € Z with d > 0 such that I = {d-¢q: q € Z}. In
particular, this means that for any x such that (* = 1, « can be written as = d- ¢, for ¢ € Z, or in other words, d|x.

Let a.b be integers and s-a+t-b =1, for s,t € Z. Suppose that ged(a,b) = ¢ for ¢ > 1. By definition, c|a and
clb, i.e., a = c¢- g for some q € Z and b = ¢ - p for some p € Z. If we replace these equations into the above linear
combination, we obtain: s(c-q)+t(c-p) =1 < ¢(s-q+t-p)=1=s-q+1t-p# 0. Moreover = ¢ implies
that |c| < 1, contradicting our assumption that ¢ > 1. Therefore, gcd(a,b) = 1. Q.E.D.

1
) s-q+t-p

Let d = ged(a,b). By theorem 1.35, we have that d = s-a+ ¢ - b, for some s,t € Z. We can divide by d because by
definition of g.c.d, d is at least 1. Hence,

R g+t9
4 d AR

By definition of g.c.d, d|a and d|b, therefore both & and g are integers.
Applying the result of the previous exercise, we conclude that 4 and g are relatively prime. Q.E.D.



