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(1.46)

(i) False. Suppose for a contradiction that 6|2. Then, 2 = 6 · q for some q ∈ Z. But, solving for q we get that
q = 1

3 /∈ Z, a contradiction. Hence 2 - 6.
(ii) True. 6 = 2 · 3 and 3 ∈ Z. Hence, 2|6.
(iii) True. 0 = 6 · 0 and 0 ∈ Z. Hence, 6|0.
(iv) False. Suppose for a contradiction that 0|6. Then 6 = 0 · q for some q ∈ Z. But, 6 = 0 · q = 0, which is clearly

a contradiction. Hence 0 - 6.
(v) True. 0 = 0 · q for some q ∈ Z, pick any q. Hence, 0|0.
(vi) True. Suppose for a contradiction that there is a c > 1 ∈ Z for which g.c.d(n, n + 1) = c. (I do not have to

worry about c being negative because I know that at least 1 divides both n and n + 1 and hence 1 is a lower
bound on the g.c.d.). This would mean that c|n and c|n+ 1, i.e., n = c · q for some q ∈ Z and n+ 1 = c · p for
some p ∈ Z. Using these equations we obtain:

n+ 1 = c · p
c · q + 1 = c · p =⇒
1 = c · p− c · q
1 = c(p− q)

Now we have to consider three cases:

(i) p− q = 0. This would mean that 1 = c · 0 = 0 . A contradiction.
(ii) p− q < 0. This would mean that 1 < 0. A contradiction.
(iii) p− q > 0. This would mean that 1 > 1. A contradiction.

Therefore, our assumption is wrong, and the case is that g.c.d(n, n+ 1) = 1 for every natural number n.

(vii) False. Let n = 13, then n+ 2 = 15 but g.c.d(13, 15) = 1 6= 2.

(1.49)
f1 = p1 + 1 = 2 + 1 = 3

f2 = p1 · p2 + 1 = 2 · 3 + 1 = 7

f3 = p1 · p2 · p3 + 1 = 2 · 3 · 5 + 1 = 31

f4 = p1 · p2 · p3 · p4 + 1 = 2 · 3 · 5 · 7 + 1 = 211

f5 = p1 · p2 · p3 · p4 · p5 + 1 = 2 · 3 · 5 · 7 · 11 + 1 = 2311

f6 = p1 · p2 · p3 · p4 · p5 · p6 + 1 = 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031

We can see that f1, f2, f3, f4 and f5 are all prime. But, f6 = 30031 = 59 · 509, not prime. Hence, the smallest k is
k = 6

(1.50) Let d, d′ ∈ Z\{0}. Suppose that d|d′ and d′|d. Then, d′ = d · q, for some q ∈ Z and d = d′ ·p for some p ∈ Z. Replace
the former into the latter:

d = d · q · p =⇒ q · p = 1 =⇒ q = 1 and p = 1 OR q = −1 and p = −1

Replacing these solutions back into the original equations, we obtain that d′ = ±d.

(1.51) To prove the statement we can apply corollary 1.37. Let I = {x : ζx = 1}. First we need to check that the conditions
of the corollary hold for I.

(i) Since by definition ζ0 = 1, then 0 ∈ I

(ii) Let a, b ∈ I. By definition of membership, ζa = 1 = ζb. Divide to obtain: ζa

ζb
= 1 ⇒ ζa−b = 1, which means

that a− b ∈ I
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(iii) Let a ∈ I and q ∈ Z. By definition of membership, ζa = 1. Raise both sides of this equation to q: (ζa)q = 1q ⇒
ζaq = 1, hence aq ∈ I

The conditions of corollary 1.37 hold, therefore, there exists d ∈ Z with d > 0 such that I = {d · q : q ∈ Z}. In
particular, this means that for any x such that ζx = 1, x can be written as x = d · q, for q ∈ Z, or in other words, d|x.

(1.56) Let a.b be integers and s · a + t · b = 1, for s, t ∈ Z. Suppose that gcd(a, b) = c for c > 1. By definition, c|a and
c|b, i.e., a = c · q for some q ∈ Z and b = c · p for some p ∈ Z. If we replace these equations into the above linear
combination, we obtain: s(c · q) + t(c · p) = 1 ⇐⇒ c(s · q+ t · p) = 1⇒ s · q+ t · p 6= 0. Moreover, 1

s·q+t·p = c implies
that |c| ≤ 1, contradicting our assumption that c > 1. Therefore, gcd(a, b) = 1. Q.E.D.

(1.57) Let d = gcd(a, b). By theorem 1.35, we have that d = s · a+ t · b, for some s, t ∈ Z. We can divide by d because by
definition of g.c.d, d is at least 1. Hence,

d

d
=
s · a+ t · b

d
⇐⇒ 1 = s

a

d
+ t

b

d

By definition of g.c.d, d|a and d|b, therefore both a
d and b

d are integers.
Applying the result of the previous exercise, we conclude that a

d and b
d are relatively prime. Q.E.D.
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