
Math 396. Quotient spaces

1. Definition

Let F be a field, V a vector space over F and W ⊆ V a subspace of V . For v1, v2 ∈ V ,
we say that v1 ≡ v2 mod W if and only if v1 − v2 ∈ W . One can readily verify that with this
definition congruence modulo W is an equivalence relation on V . If v ∈ V , then we denote by
v = v + W = {v + w : w ∈ W} the equivalence class of v. We define the quotient space of V
and W as V/W = {v : v ∈ V }, and we make it into a vector space over F with the operations
v1 + v2 = v1 + v2 and λv = λv, λ ∈ F. The proof that these operations are well-defined is similar
to what is needed in order to verify that addition and multiplication are well-posed operations on
Zn, the integers mod n, n ∈ N. Lastly, define the projection π : V → V/W as v 7→ v. Note that π
is both linear and surjective.

One can, but in general should not, try to visualize the quotient space V/W as a subspace of the
space V . With this in mind, in Figure 1 we have a diagram of how one might do this with V = R2

and W = {(x, y) ∈ R2 : y = 0} (the x-axis). Note that (x, y) ≡ (x̃, ỹ) mod W if and only if y = ỹ.
Equivalence classes of vectors (x, y) are of the form (x, y) = (0, y)+W . A few of these are indicated
in Figure 1 by dotted lines. Hence one could linearly identify R2/W with the y-axis. Similarly, if
L is any line in R2 distinct from W then L⊕W = R2 and so consequently every element in R2 has
a unique representative from L modulo W , so the composite map L → R2/W is an isomorphism.
Of course, there are many choices of L and none is better than any other from an algebraic point
of view (though the y-axis may look like the nicest since it is the orthogonal complement to the
x-axis W , a viewpoint we will return to later).

Figure 1. The quotient R2/W

After looking at Figure 1, one should forget it as quickly as possible. The problems with this
sort of identification are discussed later on. Roughly speaking, there are many natural operations
associated with the quotient space that are not compatible with the above non-canonical view of
the quotient space as a subspace of the original vector space. The issues are similar to looking at
{0, . . . , 9} ⊆ Z as representative of Z10. For example, a map f : Z→ Z, z 7→ 2z cannot be thought
of in the same way as the map z 7→ 2z because f({0, . . . , 9}) * {0, . . . , 9}. Although one should
not view {0, . . . , 9} as a fixed set of elements lying in Z, just as one should not in general identify
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V/W with a fixed set of representatives in V , this view can be useful for various computations. We
will see this is akin to the course of action that we will take in the context of quotient spaces in a
later section.

2. Universal Property of the Quotient

Let F, V,W and π be as above. Then the quotient V/W has the following universal property:
Whenever W ′ is a vector space over F and ψ : V → W ′ is a linear map whose kernel contains W ,
then there exists a unique linear map φ : V/W →W ′ such that ψ = φ ◦ π. The universal property
can be summarized by the following commutative diagram:

V
ψ //

π
²²

W ′

V/W

φ

<<yyyyyyyy

(1)

Proof. The proof of this fact is rather elementary, but is a useful exercise in developing a better
understanding of the quotient space. Let W ′ be a vector space over F and ψ : V →W ′ be a linear
map with W ⊆ ker(ψ). Then define φ : V/W → W ′ to be the map v 7→ ψ(v). Note that φ is well
defined because if v ∈ V/W and v1, v2 ∈ V are both representatives of v, then there exists w ∈ W
such that v1 = v2 + w. Hence,

ψ(v1) = ψ(v2 + u) = ψ(v2) + ψ(w) = ψ(v2).

The linearity of φ is an immediate consequence of the linearity of ψ. Furthermore, it is clear from
the definition that ψ = φ ◦ π. It remains to show that φ is unique. Suppose that σ : V/W →W ′ is
such that σ ◦ π = ψ = φ ◦ π. Then σ(v) = φ(v) for all v ∈ V . Since π is surjective, σ = φ. ¤

As an example, let V = C∞(R) be the vector space of infinitely differentiable functions over the
field R, W ⊆ V the space of constant functions and ϕ : V → V the map f 7→ f ′, the differentiation
operator. Then clearly W ⊆ ker(ϕ) and so there exists a unique map φ : V/W → V such that
ϕ = φ ◦π, π : V → V/W the projection. Two functions f, g ∈ V satisfy f = g if and only if f ′ = g′.
Note that the set of representatives for each f ∈ V/W can be thought of as f +R. Concretely, the
content of this discussion is that the computation of the derivative of f depends only on f up to a
constant factor.

In a sense, all surjections “are” quotients. Let T : V → V ′ be a surjective map with kernel
W ⊆ V . Then there is an induced linear map T : V/W → V ′ that is surjective (because T is) and
injective (follows from def of W ). Thus to factor a linear map ψ : V → W ′ through a surjective
map T is the “same” as factoring ψ through the quotient V/W .

One can use the univeral property of the quotient to prove another useful factorization. Let V1

and V2 be vector spaces over F and W1 ⊆ V1 and W2 ⊆ V2 be subspaces. Denote by π1 : V1 →
V1/W1 and π2 : V2 → V2/W2 the projection maps. Suppose that T : V1 → V2 is a linear map with
T (W1) ⊆W2 and let T̃ : V1 → V2/W2 be the map x 7→ π2(T (x)). Note that W1 ⊆ ker(T̃ ). Hence by
the universal property of the quotient, there exists a unique linear map T : V1/W1 → V2/W2 such
that T ◦ π1 = T̃ . The contents of this statement can be summarized by saying that if everything is
as above, then the following diagram commutes:
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V1
T //

π1

²²

T̃

%%JJJJJJJJJJ V2

π2

²²
V1/W1

T

// V2/W2

(2)

In such a situation, we will refer to T as the induced map. The purpose of this is that for v1 ∈ V1,
the class of T (v1) modulo W2 depends only on the class of v1 modulo W1, and that the resulting
association of congruence classes given by T is linear with respect to the linear structure on these
quotient spaces. The induced map comes to be rather useful as a tool for inductive proofs on the
dimension. We will see an example of this at the end of this handout.

3. A Basis of the Quotient

Let V be a finite-dimensional F-vector space (for a field F), W a subspace, and

{w1, . . . , wm}, {w1, . . . , wm, v1, . . . , vn}
ordered bases of W and V respectively. We claim that the image vectors {v1, . . . , vn} in V/W are
a basis of this quotient space. In particular, this shows dim(V/W ) = dimV − dimW .

The first step is to check that all vj ’s span V/W , and the second step is to verify their linear
independence. Choose an element x ∈ V/W , and pick a representative v ∈ V of x (i.e., V ³ V/W
sends v ∈ V onto our chosen element, or in other words x = v). Since {wi, vj} spans V , we can
write

v =
∑

aiwi +
∑

bjvj .

Applying the linear projection V ³ V/W to this, we get

x = v =
∑

aiwi +
∑

bjvj =
∑

bjvj

since wi ∈ V/W vanishes for all i. Thus, the vj ’s span V/W .
Meanwhile, for linear independence, if

∑
bjvj ∈ V/W vanishes for some bj ∈ F then we want to

prove that all bj vanish. Well, consider the element
∑
bjvj ∈ V . This projects to 0 in V/W , so we

conclude
∑
bjvj ∈W . But W is spanned by the wi’s, so we get

∑
bjvj =

∑
aiwi

for some ai ∈ F. This can be rewritten as
∑

bjvj +
∑

(−ai)wi = 0

in V . By the assumed linear independence of {w1, . . . , wm, v1, . . . , vn} we conclude that all coeffi-
cients on the left side vanish in F. In particular, all bj vanish.

Note that there is a converse result as well: if v1, . . . , vn ∈ V have the property that their images
vi ∈ V/W form a basis (so n = dimV −dimW ), then for any basis {wj} of W the collection of vi’s
and wj ’s is a basis of V . Indeed, since n = dimV −dimW then the size of the collection of vi’s and
wj ’s is dimV , and hence it suffices to check that they span. For any v ∈ V , its image v ∈ V/W
is a linear combination

∑
aivi, so v −∑

aivi ∈ V has image 0 in V/W . That is, v −∑
aivi ∈ W ,

and so v−∑
aivi =

∑
bjwj for some bj ’s. This shows that v is in the span of the vi’s and wj ’s, as

desired.



4

4. Some calculations

We now apply the above principles to compute matrices for an induced map on quotients using
several different choice of bases. Let A : R4 → R3 be the linear map described by the matrix


2 0 −3 4
1 1 0 −2
3 −5 7 6




Let L ⊆ R4 and L′ ⊆ R3 be the lines:

L = span




1
−1
2
0


 , L′ = span



−4
0
22




We wish to do two things:
(i) In the specific setup at the start, check that A sends L into L′. Letting A : R4/L → R3/L′

denote the induced linear map, if {ei} and {e′j} denote the respective standard bases of R4 and R3

then we wish to compute the matrix of A with respect to the induced bases {e2, e3, e4} of R4/L and
{e′1, e′2} of R3/L′. The consideration given in the previous section ensures that the e’s form bases of
their respective quotient spaces. Indeed, the e’s along with the vector spanning their corresponding
lines do in fact form a bases of their respective ambient vector spaces.

(ii) We want to compute the matrix for A if we switch to the basis {e1, e2, e4} of R4/L, and check
that this agrees with the result obtained from using our answer in (i) and a 3 by 3 change-of-basis
matrix to relate the ordered bases {e2, e3, e4} and {e1, e2, e4} of R4/L. We also want to show that
{e1, e2, e3} is not a basis of the 3-dimensional R4/L by explicitly exhibiting a vector x ∈ R4/L
which is not in the span of this triple (and prove that this x really is not in the span).

Solution
(i) It is trivial to check that A sends the indicated spanning vector of L to exactly the indicated
spanning vector of L′, so by linearity it sends the line L over into the line L′. Thus, we get a
well-defined linear map A : R4/L→ R3/L′ characterized by

A(v mod L) = A(v) mod L′.

Letting w denote the indicated spanning vector of L, the 4-tuple {e2, e3, e4, w} is a basis of R4

is a linearly independent 4-tuple (since w has non-zero first coordinate!) in a 4-dimensional space,
and hence it is a basis. Thus, by the basis criterion for quotients, {e2, e3, e4} is a basis of R4/L.
By a similar argument, since the indicated spanning vector of L′ has non-zero third coordinate, it
follows that {e′1, e′2} is a basis of R3/L′.

To compute the matrix {e′1,e′2}[A]{e2,e3,e4}, we have to find the (necessarily unique) elements
aij ∈ R such that

A(ej) = a1je
′
1 + a2je

′
2

in R3/L′ (or equivalently, A(ej) ≡ a1je
′
1 + a2je

′
2 mod L′) and then the sought-after matrix will be

(
a12 a13 a14

a22 a23 a24

)

Note that the labelling of the aij ’s here is chosen to match that of the ej ’s and the e′i’s, and of
course has nothing to do with labelling “positions” within a matrix. We won’t use such notation
when actually doing calculations with this matrix, for at such time we will have actual numbers in
the various slots and hence won’t have any need for generic matrix notation.
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Now for the calculation. We must express A(ej) as a linear combination of e′1 and e′2. Well, by
definition we are given A(ej) as a linear combination of e′1, e

′
2, e

′
3. Working modulo L′ we want to

express such things in terms of e′1 and e′2, so the issue is to express e′3 mod L′ as a linear combination
of e′1 mod L′ and e′2 mod L′. That is, we seek a, b ∈ R such that

e′3 ≡ ae′1 + be′2 mod L′,

and then we’ll substitute this into our formulas for each A(ej).
To find a and b, we let

w′ =



−4
0
22




be the indicated basis vector of L′, and since {e′1, e′2, w′} is a basis of R3 we know that there is a
unique expression

e′3 = ae′1 + be′2 + cw′

and we merely have to make this explicit (for then e′3 ≡ ae′1 + be′2 mod L′). Writing out in terms
of elements of R3, this says 


0
0
1


 =



a− 4c
b

22c


 ,

so we easily solve c = 1/22, b = 0, a = 4c = 4/22 = 2/11.
That is, e′3 ≡ (2/11)e′1 mod L′, or in other words

e′3 =
2
11
e′1

in R3/L′. Thus, going back to the definition of A, we compute

A(e2) = e′2 − 5e′3 = −10
11
e′1 + e′2,

A(e3) = −3e′1 + 7e′3 = −19
11
e′1,

A(e4) = 4e′1 − 2e′2 + 6e′3 =
56
11
e′1 − 2e′2,

so

{e′1,e′2}[A]{e2,e3,e4} =
(−10

11 −19
11

56
11

1 0 −2

)

(ii) Since the third coordinate of the indicated spanning vector w of L is non-zero, we see that
{e1, e2, e4, w} is a basis of R4, so {e1, e2, e4} is a basis of R4/L. The “hard part” of the calculation
was already done in (i) where we computed e′3 as a linear combination of e′1 and e′2:

e′3 ≡
2
11
e′1 mod L′

Using this, we compute

A(e1) = 2e′1 + e′2 + 3e′3 ≡
28
11
e′1 + e′2 mod L′,

so in conjunction with the computations of A(e2) and A(e4) modulo L′ which we did in (ii), we get

{e′1,e′2}[A]{e1,e2,e4} =
(

28
11 −10

11
56
11

1 1 −2

)
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The relevant change of basis matrices for passing between our two coordinate systems are

M : = {e2,e3,e4}[idV ]{e1,e2,e4}, N : = {e1,e2,e4}[idV ]{e2,e3,e4}
which are inverse to each other.

The choice of which matrix to use depends on which way you wish to change coordinates: we
have

{e′1,e′2}[A]{e1,e2,e4} = {e′1,e′2}[A]{e2,e3,e4} ·M, {e′1,e′2}[A]{e2,e3,e4} = {e′1,e′2}[A]{e1,e2,e4} ·N.
We’ll compute M , and then we’ll invert it to find N (or could just as well directly compute N by

the same method, and check our results are inverse to each other as a safety check). Then we’ll see
that our computed matrices do work as the theory ensures they must, relative to our calculations
of matrices for A relative to two different choices of basis in R4/L. By starting at the two bases of
R4/L which are involved, it is clear that

M =



a 1 0
b 0 0
c 0 1


 ,

where
e1 = ae2 + be3 + ce4

in R4/L, or equivalently
e1 = ae2 + be3 + ce4 + dw

with w the indicated basis vector of L and d ∈ F.
We need to explicate the fact that {e2, e3, e4, w} is a basis of R4 by solving the system of equations




1
0
0
0


 =




d
a− d
b+ 2d
c


 ,

so d = 1, a = d = 1, b = −2d = −2, c = 0. Thus,

M =




1 1 0
−2 0 0
0 0 1


 ,

and likewise (either by inverting or doing a similar direct calculation, or perhaps even both!) we
find

N =




0 −1
2 0

1 1
2 0

0 0 1


 .

Now the calculation comes down to checking one of the following identities:
(

28
11 −10

11
56
11

1 1 −2

)
?=

(−10
11 −19

11
56
11

1 0 −2

) 


1 1 0
−2 0 0
0 0 1


 ,

(−10
11 −19

11
56
11

1 0 −2

)
?=

(
28
11 −10

11
56
11

1 1 −2

) 


0 −1
2 0

1 1
2 0

0 0 1


 ,

both of which are straightfoward to verify.
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Finally, to show explicitly that e1, e2, e3 are not a basis of R4/L, we consider the congruence class
x = e4. This vector cannot lie in the R-span of e1, e2, e3 for otherwise there would exist a, b, c ∈ R
with

e4 − ae1 − be2 − ce3 ∈ span




1
−1
2
0


 ,

but this would express e4 in the span of four vectors which all have last coordinate zero. This is
impossible.

5. The Interaction of the Quotient and an Inner Product

Let V a vector space over R, dimV < ∞, and W ⊆ V a subspace. Further suppose that V is
equipped with an inner product 〈·, ·〉. Then we could identify V/W with W⊥ since W ⊕W⊥ = V .
In this case, the isomorphism is particularly easy to construct. Indeed, every element v ∈ V can be
uniquely written as u + w, where u ∈ W⊥ and w ∈ W and we identify v with u. In other words,
the direct sum decomposition implies that restricting the projection π : V → V/W to W⊥ induces
an isomorphism of W⊥ onto V/W , and by composing with the inverse of this isomorphism we get
a composite map V → V/W 'W⊥ that is exactly the orthogonal projection onto W⊥ (in view of
how the decomposition of V into a direct sum of W and W⊥ is made). In this sense, when given
an inner product on our finite-dimensional V over R we may use the inner product structure to
set up a natural identification of quotient spaces V/W with subspaces of the given vector space V ,
and we see that this orthogonal picture is exactly what was suggested in the example in Section 1
(see Figure 1). However, since this mechanism depends crucially on the inner product structure,
we stress a key point: if we change the inner product then the notion of orthogonal projection
(and hence the physical subspace W⊥ in general) will change, so this method of linearly putting
V/W back into V depends on more than just the linear structure. Consequently, if we work with
auxiliary structures that do not respect the inner product (such as non-orthogonal self maps of V ),
then we cannot expect such data to interact well with this construction even when such data may
given something well-posed on the level of abstract vector spaces.

Let us consider an eample to illustrate what can go wrong if we are too sloppy in this orthgonal
projection method of putting V/W back into V . Suppose that V ′ is another finite-dimensional
vector space over R with inner product 〈·, ·〉′, W ′ ⊆ V ′ a subspace of V and T : V → V ′ a linear
map with T (W ) ⊆ W ′. Then it is not true, in general, that T (W⊥) ⊆ (W ′)⊥. As an example,
consider V = R2, W = {(x, y) ∈ R2 : y = 0}, V ′ = R3 and W ′ = {(x, y, z) ∈ R3 : z = 0} and
let T : R2 → R3 be the map (x, y) 7→ (x, y, y). Assume that V and V ′ are both equipped with
the standard Euclidean inner product. Clearly, T (W ) ⊆ W ′. On the other hand, (0, 1) ∈ W⊥

but T ((0, 1)) = (0, 1, 1) /∈ (W ′)⊥ and hence T (W⊥) * (W ′)⊥. So the restriction of T to W⊥

does not land in W ′⊥ and hence there is no “orthogonal projection” model inside of V and V ′ for
the induced map T betwen the quotients V/W and V ′/W ′. (Note that T does not preserve the
inner products in this example.) Hence, although the induced quotient map T makes sense here,
as T carries W into W ′, if we try to visualize the quotients back inside of the original space via
orthogonal projection then we have a hard time seeing T .

6. The Quotient and the Dual

Let V be a vector space over F, dimV < ∞ and W ⊆ V a subspace. Then (V/W )∗, the dual
space of V/W , can naturally be thought of as a linear subspace of V ∗. More precisely, there exists
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a natural isomorphism ϕ : U → (V/W )∗, where U = {f ∈ V ∗ : f(W ) = 0}. The isomorphism can
be easily constructed by appealing to the universal property of the quotient. Indeed, let f ∈ U .
Then f : V → F is linear with W ⊆ ker(f) and so there exists a unique map g : V/W → F, in other
words g ∈ (V/W )∗, such that f = g ◦ π. Define ϕ(f) = g, where f and g as before. The linearity
of ϕ is clear from the construction and the injectivity is also clear since if ϕ(f1) = g = ϕ(f2), then
f1 = g ◦ π = f2. To see that ϕ is surjective, pick g ∈ (V/W )∗ arbitrary and let f = g ◦ π ∈ U . By
uniqueness, ϕ(f) = g follows from the definition of ϕ.

Conversely, we can show that every subspaceW ′ of V ∗ has the form (V/W )∗ for a unique quotient
V/W of V . In other words, the subspaces of V ∗ are in bijective correspondence with the quotients
of V via duality. Indeed, to give a quotient that is the “same” as to give a surjective linear map
V → V ′, and to give a subspace of V ∗ is the “same” as to give an injective linear map U∗ → V ∗,
and we know that a linear map between finite-dimensional vector spaces is surjective if and only
if its dual injective (and vice versa). By means of double-duality, these two procedures are the
reverse of each other: if V ³ V ′ is a quotient and we form the subspace V ′∗ → V ∗, then upon
dualizing again we recover (by double duality) the original surjection, which is to say that V ′ is the
quotient by exactly the subspace of vectors in V killed by the functionals coming from V ′∗. That
is, the concrete converse procedure to go from subspaces of V ∗ to quotients of V is the following:
given a subspace of V ∗, we form the quotient of V modulo the subspace of vectors killed by all
functionals in the given subspace of V ∗. In the context of inner product spaces, where we use the
inner product to indentify quotients with subspaces of the original space, this procedure translates
into the passage between subspaces of V and their orthogonal complements (and the fact that
the above two procedures are reverse to each other corresponds to the fact that the orthogonal
complement of the orthogonal complements is the initial subspace).

7. More on the Quotient and Matrices

Let V1 and V2 be vector spaces over F of dimension n1 and n2, respectively, W1 ⊆ V1 and
W2 ⊆ V2 subspaces of dimension m1 and m2, respectively, and T : V1 → V2 a linear map such that
T (W1) ⊆ W2. Let B1 and B2 be bases of V1 and V2, respectively, that are extensions of bases of
W1 and W2, resectively. Let A be the matrix representation of T with respect to B1 and B2. Then,
the lower right (n1 −m1)× (n2 −m2) block of A exactly corresponds to the matrix representation
of the induced map T : V1/W1 → V2/W2 with respect to the bases of V1/W1 and V2/W2 coming
from the non-zero vectors in the sets π1(B1) and π2(B2), π1 and π2 the usual projection maps.

Proof. Let m = n2 − m2 and v1, . . . , vm ∈ V2/W2 be the non-zero vectors in π2(B2). Note that
these vectors form a basis of V2/W2. Further, let v ∈ B1 with v /∈W1. Then

T (v) = T (v)
= α1v1 + · · ·+ αmvm.

Hence there exists w ∈ W2 such that T (v) = α1v1 + · · · + αmvm + w. The claim follows since the
matrix representation of a linear map with respect to choices of ordered bases arises exactly as the
coefficients of the images of vectors making up the ordered basis of the source vector space written
with respect ordered basis of the target vector space basis. ¤

Now, let V1 = V2 = V and W1 = W2 = W and T : V → V a linear map with T (W ) ⊆ W . Let
T |W : W → W be the self map induced by T , and let T : V/W → V/W be the map induced by
V/W . We shall now apply the above result to show that det(T ) = det(T |W ) det(T ). To this end,
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one only needs to note that the upper left block M11 of the matrix representation

A =
(
M11 M12

M21 M22

)

of T with respect to a basis B of V extended from a basis B′ of W will correspond to the matrix
representation of T |W with respect to the basis B′ and also that the entries of the lower left block
M21 of A will be 0. Both of these facts are immediate since the restriction T |W maps into W .
Furthermore, the previous result implies that M22 exactly corresponds to the matrix representation
of T̄ with respect to the basis B′.

As another application, consider the following. Let V be a vector space of finite dimension over
C and T : V → V a linear map. We will use the idea of the quotient space to show that there
exists a basis B of V such that the map T written as a matrix with respect to the basis B is upper
triangular.

Proof. The proof is by induction on the dimension n ∈ N0. The case where n = 0, i.e. V = 0, is
somewhat meaningless and so we ignore it. The case where n = 1 is also trivial. Now suppose that
for some fixed n ∈ N that for every vector space V over C of dimension n that every linear map
T : V → V can be expressed as an upper triangular matrix with respect to some ordered basis B
of V . Let W be an (n+ 1)-dimensional vector space over C and S : W → W a linear map. Recall
that by the fundemental theorem of algebra C is algebraically closed, i.e. every polynomial has a
root. In particular, it is immediate from this fact that there exists an eigenvector w ∈W of S. Let
L = span{w}. Note that S(L) ⊆ L since w is an eigenvector of S and further that dimW/L = n.
By the induction hypothesis, there exists an ordered basis B = {w1, . . . , wn} of W/L such that
induced map S : W/L → W/L expressed as a matrix with respect to B is upper triangular. Let
B′ = {w,w1, . . . , wn}. Then B′ is an ordered basis of W (recall Section 2). Furthermore, S written
as a matrix A with respect to B′ is upper triangular.

A =
(
M11 M12

M21 M22

)

Above we express A in block form. M11 is a 1× 1 matrix, M12 a 1×n matrix, M21 an n× 1 matrix
and M22 is an n × n matrix. Since w is an eigenvector, it is clear that M11 corresponds to the
eigenvalue associated with w and that M21 consists only of zeroes. M22 exactly agrees with the
matrix expression of S with respect to B (recall the construction of the induced map) and so is
upper triangular. For our purposes, the form ofM12 is irrelevant and thus A is upper triangular. ¤


