MATH 413-513

RECENT RESULTS

1. Results on Linear Transformations

Here is a list of the important results we have proven about linear transformations between vector spaces.

Theorem 1. Let V and W be vector spaces over a field \mathbb{F} . Let $\{v_1, v_2, \dots, v_n\} \subset V$ be a basis of V. Let $\{w_1, w_2, \dots w_n\} \subset W$ be any collection of vectors. There is a unique linear map $T: V \to W$ with

$$T(v_i) = w_i$$
 for all $1 \le i \le n$.

Proposition 1. Let V and W be vector spaces over a field \mathbb{F} and let $T \in \mathcal{L}(V,W)$. Then,

- i) T(0) = 0.
- ii) $\operatorname{null}(T) \subset V$ is a subspace of V.
- ii) range $(T) \subset W$ is a subspace of W.

Proposition 2. Let V and W be vector spaces over a field \mathbb{F} and let $T \in \mathcal{L}(V,W)$. Then T is injective if and only if $\text{null}(T) = \{0\}$.

Theorem 2. Let V and W be vector spaces over a field \mathbb{F} and let $T \in \mathcal{L}(V,W)$. If V is finite dimensional, then $\operatorname{range}(T)$ is finite dimensional and

$$\dim(V) = \dim(\operatorname{null}(T)) + \dim(\operatorname{range}(T))$$

Corollary 1. Let V and W be vector spaces over a field \mathbb{F} and let $T \in \mathcal{L}(V,W)$. If V is finite dimensional, then

- i) If $\dim(V) > \dim(W)$, then T is not injective.
- ii) If $\dim(V) < \dim(W)$, then T is not surjective.

Proposition 3. Let U, V, and W be finite dimensional vector spaces over a field \mathbb{F} . Fix bases in U, V, and W. For any $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$,

$$M(TS) = M(T)M(S)$$
.

Proposition 4. Let V and W be finite dimensional vector spaces over a field \mathbb{F} . Fix bases in V and W. For any $T \in \mathcal{L}(V, W)$ and any $v \in V$,

$$M(Tv) = M(T)M(v)$$
.

Proposition 5. Let V and W be vector spaces over a field \mathbb{F} . A linear mapping $T \in \mathcal{L}(V, W)$ is invertible if and only if T is injective and surjective.

Theorem 3. Let V and W be finite dimensional vector spaces over a field \mathbb{F} . V and W are isomorphic if and only if

$$\dim(V) = \dim(W).$$

Theorem 4. Let V be a finite dimensional vector space over a field \mathbb{F} and let $T \in \mathcal{L}(V, V)$.

The following are equivalent:

- i) T is invertible.
- ii) T is injective.
- iii) T is surjective.

Proposition 6. Let V be a finite dimensional vector space over \mathbb{F} and let $T \in \mathcal{L}(V,V)$. $\lambda \in \mathbb{F}$ is an eigenvalue of T if and only if $T - \lambda I$ is not invertible. (By the previous result, you can replace **invertible** with either **injective** or **surjective**.)

Theorem 5. Let V be a vector space over \mathbb{F} , $T \in \mathcal{L}(V, V)$, and let $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{F}$ be distinct eigenvalues of T with corresponding eigenvectors $v_1, v_2, \dots, v_n \in V$. The set $\{v_1, v_2, \dots, v_n\} \subset V$ is linearly independent.

Corollary 2. Let V be a finite dimensional vector space over \mathbb{F} . Any $T \in \mathcal{L}(V, V)$ has at most $\dim(V)$ distinct eigenvalues.

Proposition 7. Let V be a finite dimensional vector space over \mathbb{F} and let $T \in \mathcal{L}(V, V)$ have $\dim(V)$ distinct eigenvalues. Then V has a basis consisting of eigenvectors of T and with respect to this basis (on V as the domain of T and on V as the range of T) the matrix M(T) is diagonal.

Theorem 6. Let $V \neq \{0\}$ be a finite dimensional vector space over \mathbb{C} . Then each $T \in \mathcal{L}(V, V)$ has at least one eigenvalue.

Proposition 8. Let V be a finite dimensional vector space over \mathbb{F} . Let $\{v_1, v_2, \dots, v_n\}$ be a basis in V and take $T \in \mathcal{L}(V, V)$. The following are equivalent:

- i) The matrix M(T) with respect to $\{v_1, v_2, \dots, v_n\}$ is upper diagonal.
- ii) For each $k = 1, 2, \dots, n, T(v_k) \in \operatorname{span}(v_1, v_2, \dots, v_k)$.
- iii) For each $k = 1, 2, \dots, n$, the subspace $U_k = \operatorname{span}(v_1, v_2, \dots, v_k)$ is a T invariant subspace of V.

Theorem 7. Let V be a finite dimensional vector space over \mathbb{C} and let $T \in \mathcal{L}(V, V)$. Then, there is a basis of V in which M(T) is upper diagonal.

Proposition 9. Let V be a finite dimensional vector space over \mathbb{F} . Let $T \in \mathcal{L}(V,V)$ and suppose there is a basis in V in which M(T) is upper diagonal. Then

- i) T is invertible if and only if all entries on the diagonal of M(T) are non-zero
- ii) The eigenvalues of T are precisely the diagonal entries of M(T).