Final Examination - MS403

December 19, 2013

- (20)1. Complete the following definitions:
- Let F be a field and V a finite dimensional vector space over F. Let $T:V\to V$ be a linear transformation. An element $\alpha\in F$ is called an <u>eigenvalue</u> for T if
- \checkmark (δ) A set F with two binary operations + and \cdot is called a <u>field</u> if
- (e) A permutation θ in S_n is called <u>even</u> if
- (d) Let G be a group. A set S is said to be a G-set if
 - (15)2. Give an example of each of the following. No justification is required.
- (a) A 2×2 matrix over **Q** that has no eigenvalues in **Q**.
- (b) A nonabelian group of order 54.
- (e) Two groups G_1 and G_2 and a nontrivial homomorphism $f: G_1 \to G_2$ such that f is not one-to-one and not onto. (The trivial homomorphism is the one that sends every element in G_1 to the identity.)
- (10)3.(a) Find the order of the group $Gl_3(\mathbf{F}_5)$.
- (b) Find the number of elements of order 6 in S_7 .
- (10)4.(a) Let F be a field and V a finite dimensional vector space over F. Complete the following definition: A function $V \times V \times \cdots \times V$ (n times) is called multilinear, alternating if
- What is the characterization of the determinant function $det: M_n(F) \to F$ using multilinear, alternating functions? No justification required.
- (10)5. State the theorem classifying the finite subgroups of the group M_2 of rigid motions of the plane. Your statement should include a description of how these groups are acting on the plane.
- (10)6. Find the Sylow-3 subgroups of S_6 .

(10)7. Prove the following is a presentation of S_3 :

$$< x, y | x^2 = y^2 = (xy)^3 = e >$$

(10)8. Prove there is no simple group of order 150.

- (10)9. Let G be a nonabelian group of order p^3 , where p is prime.
- (a) Prove that |Z(G)| = p.
- (b) Prove that G/Z(G) is isomorphic to $C_p \times C_p$.

CAN