Homework - MS403

Due Tuesday, October 15, 2013

Remember to write on only one side of the sheet.

- 1. Let G be a group. Prove that if G/Z(G) is cyclic, then G is abelian.
- 2. Let m and n be positive integers. Prove that $C_m \times C_n$ is cyclic if and only if m and n are relatively prime.
- 3. Let G be a finite group. The <u>exponent</u> of G is the smallest positive integer k such that for all $g \in G$, $g^k = e$. It is denoted exp(G). Prove the following:
- (a) $exp(G) = lcm\{o(g)|g \in G\}$
- (b) exp(G) divides |G|.
- (c) Compute the exponents of the following groups: C_6 , S_4 , Q_8 .
- 4. Let G be a finite abelian group. Prove that G is cyclic if and only if exp(G) = |G|.
- 5. (a) Let V and W be vector spaces over a field F and let $T:V\to W$ be a linear transformation. Prove that if T is an isomorphism (that is, T is one-to-one and onto), then the inverse function T^{-1} is also a linear transformation.
- (b) Now let $A \in M_n(F)$ and let $L_A : F^n \to F^n$ denote the linear transformation given by left multiplication by A. Prove that L_A is an isomorphism if and only if the matrix A is invertible.
- 6. Let V be an F-vector space and let W be a subspace.
- (a) Prove that V is finite dimensional if and only if W and V/W are finite dimensional.
- (b) Now assume V is finite dimensional and prove that dim(W) + dim(V/W) = dim(V).
- 7. Let V and U be vector spaces over a field F and let $T: V \to U$ be a linear transformation.
- (a) Prove that $T(V) (= \{T(v) | v \in V\})$ is a subspace of W and is finite dimensional if V is finite dimensional.
- (b) Prove that if V is finite dimensional then dim(ker(T)) + dim(T(V)) = dim(V) (Hint: Problem 6 and the fundamental theorem).