PRACTICE PROBLEMS FOR THE FINAL

(1) Determine the general solution of the given differential equations.

$$y^{(4)} - y = \frac{3}{t}$$

$$y''' - y' = 3\sin t$$

 $\chi(2)$ Find the solution of the given initial value problem. Describe how the solution behaves as $x \to 0$.

$$4x^2y'' + 8xy' + 17y = 0,$$
 $y(1) = 2,$ $y'(1) = -3$

(3) Find a power series solution of the given O.D.E.s about the given point x_0 ; find a recurrence relation for the coefficients of the power series. If possible find the general term of each solution.

$$\sqrt{4^{\prime}-x^{2}}y^{\prime\prime}+2y=0, \qquad x_{0}=0$$

 $y^{\prime\prime}-xy^{\prime}-y=0, \qquad x_{0}=1$

Determine a suitable form of y(t) if the method of undetermined coefficients is to be used.

$$y''' - 3y'' + 2y' = t + e^{t}$$

$$y'' - y' = 2e^{t} \sin t$$

(5) Determine the radius of convergence of the given power series.

$$\sum_{n=0}^{\infty} \frac{(-1)^n n^2 (x+2)^n}{3^n}$$

(6) Use the method of Variation of Parameters to find the general solution of the given I.V.P.s

$$y^{\prime\prime\prime} - 3y^{\prime} + y = t - 1,$$
 $y(0) = y^{\prime}(0) = 1$ $y^{\prime\prime\prime} + y^{\prime} = \sec t,$ $y(0) = 0,$ $y^{\prime}(0) = 1,$ $y^{\prime\prime}(0) = -1$

(7) Find a power series solution about $x_0 = 1$ of the given differential equation.

$$(x^2 - 2x)y'' + xy' - y = 0$$

Find a lower bound on the radius of convergence of the series solution about x_0 of the given differential equations.

$$y'' + 4y' + 6xy = 0,$$
 $x_0 = 0,$ $x_0 = 4$
 $(1-x^2)y'' + 4xy' + y = 0,$ $x_0 = 2,$ $x_0 = 5$

Date: June 9, 2013.

(9) Seek a power series solution of the given IVPs about the given point x_0 . Find the recurrence relation and write the first four terms of each of the two solutions y_1 and y_2 .

$$(1-x)y^{''}+y=0,$$
 $x_0=0,$ $y(0)=1,y^{'}(0)=5$
 $2y^{''}+(x+1)y^{'}+3y=0,$ $x_0=2,$ $y(2)=-1/2,y^{'}(2)=7$