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Section 1.3

2. Second order, nonlinear.

4. First order, nonlinear.

6. Third order, linear.

13. Given the following second order, linear differential equation: y′′ + y = sec(t), 0 < t < π/2, let us check
that the function y(t) = cos(t)ln(cos(t)) + tsint(t) is a solution. For this, let us first compute y′′ as follow:

y′′ = [(cos(t)ln(cos(t)) + tsin(t))′]′ Definition of y
= [(cos(t)ln(cos(t)))′ + (tsin(t))′]′ Linearity of derivative
= [−sin(t)ln(cos(t)) + cos(t) 1

cos(t) − sin(t) + sin(t) + tcos(t)]′ Product rule

= [(ln(cos(t)) + 1)(−sin(t)) + sin(t) + tcos(t)]′ Grouping terms
= [(ln(cos(t)) + 1)(−sin(t))]′ + sin(t)′ + (tcos(t))′ Linearity of derivative
= 1

cos(t)sin
2(t) + (ln(cos(t)) + 1)(−cos(t)) + cos(t) + cos(t) + t(−sint(t)) Product rule

= sin2(t)
cos(t) − cos(t)ln(cos(t))− cos(t) + 2cos(t)− tsin(t) Rearranging terms

= sin2(t)
cos(t) − cos(t)ln(cos(t)) + cos(t)− tsin(t) Rearranging terms

Now, the relation becomes:

y′′ + y = ( sin2(t)
cos(t) − cos(t)ln(cos(t)) + cos(t)− tsin(t)) + (cos(t)ln(cos(t)) + tsint(t))

= sin2(t)
cos(t) + cos(t) Canceling terms

= sin2(t)+cos2(t)
cos(t) Trigonometric identity

= 1
cos(t) Trigonometric identity

= sec(t). Showing that indeed y is a solution to the differential equation.

Section 2.2

5.
dy

dx
= (cos2(x))(cos2(2y)). This is a first order, nonlinear, separable differential equation. To solve it we

proceed as follow:

dy

cos2(2y)
= cos2(2x)dx Separating the equation

∫ dy

cos2(2y)
=

∫
cos2(2x)dx Integrating both sides

x/2 + sin(2x)/4 = sin(2y)/2cos(2y) + C Trigonometrical integration

2x+ sin(2x) = 2tan(2y) + C Multiplying by 4 and trig. identities

2x+ sin(2x)− 2tan(2y) = C General Solution.

Where cos(2y) 6= 0, and 2y cannot be a multiple of π/2.

8.
dy

dx
=

x2

1 + y2
. This is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:
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(1 + y2)dy = x2dx Separating the equation∫
(1 + y2)dy =

∫
x2dx Integrating both sides

y + y3/3 = x3/3 + C Simple polynomial integration

3y + y3 = x3 + C Multiplying by 3

3y + y3 − x3 = C General Solution.

12. Consider the differential equation:
dr

dθ
=
r2

θ
with initial condition r(1) = 2

(a) This is a first order, nonlinear, separable equation. To solve it we proceed as follow:

dr

r2
=

dθ

θ
Separating the equation

∫ dr
r2

=
∫ dθ
θ

Integrating both sides

−1

r
= ln(|θ|) + C Solving for r

r(θ) =
−1

ln(|θ|) + C
General solution

Now we solve for C given that r(1) = 2 =
−1

ln(1) + C
=
−1

C
⇒ C = −1

2 . Hence, the solution for the

initial value problem is given explicitly by:

r(θ) =
2

1− 2ln(|θ|)

(b)

(c) The function r(θ) is a composition of continuos functions so it is continuos everywhere except where it is
not defined. In this case, the function is not defined if 2ln(|θ|) = 1, which would make the denominator

zero. Hence, θ 6= e
1
2 . The domain is therefore θ ∈ (0, inf) \ e 1

2 .
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15. Consider the differential equation: y′ =
2x

1 + 2y
with initial condition y(x = 2) = 0.

(a) This is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:

(1 + 2y)dy = 2xdx Separating the equation∫
(1 + 2y)dy =

∫
2xdx Integrating both sides

y + y2 = x2 + C Simple polynomial integration

y + y2 − x2 = C General Solution.

Now we solve for C given that y = 0 when x = 2. Then, 0 + 02 − 22 = C ⇒ C = −4. Finally,we solve y
explicitly in terms of x to obtain the solution:

y + y2 − x2 = −4 ⇐⇒ (y +
1

2
)2 − 1

4
= x2 − 4 ⇐⇒ y +

1

2
= ±

√
x2 − 15

4
⇐⇒ y = ±

√
x2 − 15

4
− 1

2

(b)

(c) The solution y = ±
√
x2 − 15

4 −
1
2 is defined if and only if x2 − 15

4 ≥ 0 ⇐⇒ x ≥
√
15
2

19. Consider the differential equation: sin(2x)dx+ cos(3y)dy = 0 with initial condition y(x = π/2) = π/3. This
is a first order, nonlinear, separable differential equation. To solve it we proceed as follow:

−sin(2x)dx = cos(3y)dy Separating the equation∫
−sin(2x)dx =

∫
cos(3y)dy Integrating both sides

C − 1
2cos(2x) = − 1

3sin(3y) Trigonometric integration

1
2cos(2x)− 1

3sin(3y) = C General Solution.

Now we solve for C given that y = π/3 when x = π/2. Then, 1
2cos(π)− 1

3sin(π) = C ⇒ C = 1
2 . The solution

is:
1

2
cos(2x)− 1

3
sin(3y) =

1

2
⇐⇒ y(x) =

arcsin( 3
2 (cos(2x)− 1))

3

For the solution to be defined we have to have cos2(x) ≤ 1/3 ⇐⇒ |cos(x)| ≤ 1/
√

3, and hence,

arccos(1/
√

3) ≤ x ≤ π − arccos(1/
√

3)
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22. Consider the differential equation: y′ =
3x2

3y2 − 4
with initial condition y(x = 1) = 0. This is a first order,

nonlinear, separable differential equation. To solve it we proceed as follow:

(3y2 − 4)dy = 3x2dx Separating the equation∫
(3y2 − 4)dy =

∫
3x2dx Integrating both sides

y3 − 4y = x3 + C Simple polynomial integration

y3 − 4y − x3 = C General Solution.

Now we solve for C given that y = 0 when x = 1. Then, 03 − 4(0)− 13 = C ⇒ C = −1. The solution is:

y3 − 4y − x3 = −1

To determine the interval in which the solution is valid we should first notice that from our original D.E., we
have the constraint that 3y2 − 4 6= 0 ⇐⇒ y 6= ± 2√

3

23. Consider the differential equation: y′ = 2y2 + xy2 with initial condition y(x = 0) = 1. This is a first order,
nonlinear, separable differential equation. To solve it we proceed as follow:

dy

dx
= y2(2 + x) Rewriting the equation

dy

y2
= (2 + x)dx Separating the equation

∫ dy
y2

=
∫

(2 + x)dx Integrating both sides

−1
y = 2x+

x2

2
+ C Simple polynomial integration

−2
y = x2 + 4x+ C Multiplying both sides by 2

y(x) =
−2

x2 + 4x+ C
General Solution.

Now we solve for C given that y(0) = 1 =
−2

C
⇐⇒ C = −2. The solution is:

y(x) =
−2

x2 + 4x− 2

To obtain the minimum value, it suffices to minimize f(x) = x2 + 4x − 2, since we take −2 and divided by
this value. We know this is a parabola, and so it has a minimum value. Using the first and second derivative
tests the minimum x0 is such that: f ′(x0) = 0 = 2x0 + 4 ⇒ x0 = −4/2 = −2. Also, f ′′(x0) = 2 > 0, hence
x0 is a minimum (which we already know from the fact that f(x) is a parabola). Therefore, the minimum is
attained at x0 = −2.

24. Consider the differential equation: y′ =
2− ex

3 + 2y
with initial condition y(x = 0) = 0. This is a first order,

linear, separable differential equation. To solve it we proceed as follow:

(3 + 2y)dy = (2− ex)dx Separating the equation∫
(3 + 2y)dy =

∫
(2− ex)dx Integrating both sides

3y + y2 = 2x− ex + C Simple polynomial integration

Now we solve for C given that y = 0 when x = 0. i.e., 0 = 0− e0 +C ⇒ C = 1. Finally, we write the explicit
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solution:

3y + y2 = 2x− ex + 1 ⇐⇒
(
y +

3

2

)2

= 2x− ex +
13

4
⇐⇒ y = ±

√
2x− ex +

13

4
− 3

2

This function is maximized exactly when f(x) =
√

2x− ex + 13
4 is maximize. Since the square root is an

increasing function, we can maximize the simpler function g(x) = f(x)2 = 2x− ex + 13
4 . Using the first and

second derivative tests, the minimum x0 is such that : f ′(x0) = 2 − ex0 = 0 ⇒ ex0 = 2 ⇐⇒ x0 = ln(2).
Also, f ′′(x0) = −ex0 < 0 for any value of x0. Hence, the maximum is attained at x0 = ln(2).

Section 2.1

3. (c) The equation y′ + y = te−t + 1 is a first order, linear equation. We solve this by integrating factor:

(i) The equation is already in the desired form y′ + y = te−t + 1, with 1 as the coefficient of y′.

(ii) Integrating factor: since p(t) = 1 we get µ(t) = e
∫
p(t)dt = e

∫
1dt = et

(iii) Multiply both sides of the equation by the integrating factor: et[y′ + y] = et[te−t + 1]

(vi) Using product rule and implicit differentiation:
d

dt
[ety] = tet−t + et =⇒ d

dt
[ety] = t+ et

(v) Integrate both sides:
∫ d

dt
[ety] =

∫
t+ etdt =⇒ ety = t2/2 + et + C

The final solution is y(t) = (t2/2 + et + C)/et ⇐⇒ y(t) = t2/2et + 1 + C/et.

Also, since lim
t→∞

y(t) =∞2/2e∞ + 1 + C/e∞ is an indeterminate form, we can use L’Hopital as follow:

lim
t→∞

y(t) =
1
2 t

2 + et + c

et
= lim

t→∞

( 1
2 t

2 + et + c)′

(et)′
= lim

t→∞

t+ et

et
still indeterminate apply L’Hopital again

= lim
t→∞

t+ et

et
= lim

t→∞

(t+ et)′

(et)′
= lim

t→∞

1 + et

et
= lim

t→∞

1

et
+ 1 = 0 + 1 = 1

Since 1/et goes to zero as t goes to infinity. We could have also derived this limit by observing that et grows
much faster than t2.

7. (c) The equation y′ + 2ty = 2te−t
2

is a first order, linear equation. We solve this by integrating factor:

(i) The equation is already in the desired form y′ + 2ty = 2te−t
2

, with 1 as the coefficient of y′.

(ii) Integrating factor: since p(t) = 2t we get µ(t) = e
∫
p(t)dt = e

∫
2tdt = et

2

(iii) Multiply both sides of the equation by the integrating factor: et
2

[y′ + 2ty] = et
2

[2te−t
2

]

(vi) Using product rule and implicit differentiation:
d

dt
[et

2

y] = 2tet
2−t2 =⇒ d

dt
[et

2

y] = 2t

(v) Integrate both sides:
∫ d

dt
[et

2

y]dt =
∫

2tdt =⇒ et
2

y = t2 + C

The final solution is y(t) =
t2 + C

et2
.

Also, since lim
t→∞

y(t) =
∞2 + C

e∞2 is an indeterminate form, we can use L’Hopital as follow:

lim
t→∞

y(t) =
t2 + C

et2
= lim

t→∞

(t2 + C)′

(et2)′
= lim

t→∞

2t

2tet2
= lim

t→∞

1

et2
= 0

We could have also derived this limit by observing that et
2

grows much faster than t2 + C for C a constant.

8. (c) The equation (1+ t2)y′+4ty = (1+ t2)−2 is a first order, linear equation. We solve this by integrating factor:

(i) Multiply by (1 + t2)−1 both sides of the equation to transform it to the desired form:

y′ +
4t

1 + t2
y = (1 + t2)−3
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(ii) Integrating factor: since p(t) =
4t

1 + t2
we get µ(t) = e

∫
p(t)dt = e

∫ 4t

1 + t2
dt

. We can solve the integral

by making the substitution: u = 1 + t2 =⇒ du = 2tdt =⇒ dt = du
2t , to obtain as the integrating factor:

e2ln(1+t2) = (1 + t2)2

(iii) Multiply both sides of the equation by the integrating factor: (1+t2)2[y′+
4t

1 + t2
y] = (1+t2)2[(1+t2)−3]

(vi) Using product rule and implicit differentiation:
d

dt
[(1 + t2)2y] = (1 + t2)−1

(v) Integrate both sides:
∫ d

dt
[(1 + t2)2y]dt =

∫
(1 + t2)−1dt =⇒ (1 + t2)2y = arctan(t) + C

The final solution is y(t) =
arctan(t) + C

(1 + t2)2
.

Also, lim
t→∞

y(t) = 0 since arctan(t) approaches π/2 as t goes to infinity, but (1 + t2)2 approaches infinity

as t approaches infinity. Again, we could have use L’Hopital to solve this limit.

15. The equation ty′+2y = t2− t+1, y(1) = 1
2 , t > 0 is a first order, linear equation. We solve this by integrating

factor:

(i) Multiply by t−1 both sides of the equation to transform it to the desired form:

y′ +
2

t
y =

t2 − t+ 1

t

(ii) Integrating factor: since p(t) =
2

t
we get µ(t) = e

∫
p(t)dt = e

∫ 2

t
dt

= e2ln(t) = t2

(iii) Multiply both sides of the equation by the integrating factor: t2[y′ +
2

t
y] = t2[

t2 − t+ 1

t
] = t3 − t2 + t

(vi) Using product rule and implicit differentiation:
d

dt
[t2y] = t3 − t2 + t

(v) Integrate both sides:
∫ d

dt
[t2y]dt =

∫
(t3 − t2 + t)dt =⇒ t2y =

t4

4
− t3

3
+
t2

2
+ C

The general solution is y(t) =

t4

4
− t3

3
+
t2

2
+ C

t2
=
t2

4
− t

3
+

1

2
+
C

t2
.

Now we solve for the initial condition: y(1) =
1

2
=

1

2
− 1

3
+

1

2
+ C =

3− 4 + 6

12
+ C =

5

12
+ C =⇒ C =

1

12
.

So our particular solution is:

y(t) =
t2

4
− t

3
+

1

2
+

1
12

t2
⇐⇒ y(t) =

3t4 − 4t3 + 6t2 + 1

12t2

16. The equation y′ +
2

t
y =

cost

t2
, y(π) = 0, t > 0 is a first order, linear equation. We solve this by integrating

factor:

(i) The equation is already in the desired form y′ +
2

t
y =

cost

t2
, with 1 as the coefficient of y′.

(ii) Integrating factor: since p(t) =
2

t
we get µ(t) = e

∫
p(t)dt = e

∫ 2

t
dt

= e2ln(t) = t2.

(iii) Multiply both sides of the equation by the integrating factor: t2[y′ +
2

t
y] = t2[

cost

t2
]

(vi) Using product rule and implicit differentiation:
d

dt
[t2y] = cost

(v) Integrate both sides:
∫ d

dt
[t2y] =

∫
costdt =⇒ t2y = sin(t) + C
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The general solution is y(t) =
sin(t) + C

t2
. Finally, we solve for C using the initial conditions:

y(π) = 0 =
sin(π) + C

π2
=

C

π2
=⇒ C = 0

The particular solution is:

y(t) =
sin(t)

t2

27. Consider the initial value problem:

y′ +
1

2
y = 2cos(t), y(0) = −1, t > 0

This equation is a first order, linear equation. We solve this by integrating factor:

(i) The equation is already in the desired form y′ + 1
2y = 2cos(t), with 1 as the coefficient of y′.

(ii) Integrating factor: since p(t) =
1

2
we get µ(t) = e

∫
p(t)dt = e

∫ 1

2
dt

= e
t
2 .

(iii) Multiply both sides of the equation by the integrating factor: e
t
2 [y′ + 1

2y] = e
t
2 2cos(t)

(vi) Using product rule and implicit differentiation:
d

dt
[e

t
2 y] = 2e

t
2 cos(t)

(v) Integrate both sides:
∫ d

dt
[e

t
2 ydt] =

∫
2e

t
2 cos(t)dt.

Now, using integration by parts,we can compute the right hand side integral and thus obtain the general
solution y(t) = 4

5 (2sin(t) + cos(t)) + C

e
t
2

Finally, use the initial condition to find a particular solution:

y(0) = −1 =
4

5
+
C

e0
=

4

5
+ C ⇐⇒ C = −1− 4

5
= −9

5

The solution is:

y(t) =
4

5
(2sin(t) + cos(t))− 9

5e
t
2

28. Consider the initial value problem:

y′ +
2

3
y = 1− 1

2
t, y(0) = y0

Let t0 be a value for which the solution y(t) touches, but does not cross, the t-axis. Then we know from
previous calculus that y(t0) = 0, y′(t0) = 0 and y′′(t0) 6= 0 (the second relation holds since at t0 we have and
inflection point and the last relation holds since the graph is either concave upward or downward). Using
this information in our original differential equation we can solve for t0 as follow:

0 +
2

3
0 = 1− 1

2
t0 ⇐⇒ t0 = 2

Hence, we have the additional information y(2) = y′(2) = 0. Now we can solve the D.E.

The equation y′ + 2
3y = 1− 1

2 t is a first order, linear equation. We solve this by integrating factor:

(i) The equation is already in the desired form y′ + 2
3y = 1− 1

2 t, with 1 as the coefficient of y′.

(ii) Integrating factor: since p(t) =
2

3
we get µ(t) = e

∫
p(t)dt = e

∫ 2

3
dt

= e
2
3 t.

(iii) Multiply both sides of the equation by the integrating factor: e
2
3 t[y′ + 2

3y] = e
2
3 t[1− 1

2 t]

(vi) Using product rule and implicit differentiation:
d

dt
[e

2
3 ty] = e

2
3 t[1− 1

2 t]
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(v) Integrate both sides:
∫ d

dt
[e

2
3 ty]dt =

∫
e

2
3 t[1− 1

2 t]dt.

Now, using integration by parts, setting u = t =⇒ du = dt; v = e
2
3 t =⇒ dv = 2

3e
2
3 t, we can compute the

right hand side integral and thus obtain
∫
e

2
3 t[1− 1

2 t]dt = −3
8 e

2
3 t(2t− 7) + C

The general solution is y(t) =
−3
8 e

2
3 t(2t− 7) + C

e
2
3 t

. Now we need to solve for y0. From the data of the problem

we kwon that

y(0) = y0 =
−3

8
(−7) + C ⇐⇒ C = y0 −

21

8

We can rewrite our D.E. as

y(t) =
−3
8 e

2
3 t(2t− 7) + (y0 − 21

8 )

e
2
3 t

Finally, using the fact that y(2) = 0 we can solve for y0:

y(2) = 0 =
9
8e

4
3 − 21

8 + y0

e
4
3

=⇒ y0 =
21− 9e

4
3

8
≈ −1.642876

30. Consider the initial value problem:

y′ − y = 1 + 3sin(t), y(0) = y0

We want to find y0 such that the solution to the D.E. remains finite as t → ∞. First we need to solve this
equation. This is a first order, linear equation. We solve this by integrating factor:

(i) The equation is already in the desired form y′ − y = 1 + 3sin(t), with 1 as the coefficient of y′.

(ii) Integrating factor: since p(t) = −1 we get µ(t) = e
∫
p(t)dt = e

∫
−1dt = e−t.

(iii) Multiply both sides of the equation by the integrating factor: e−t[y′ − y] = e−t[1 + 3sin(t)]

(vi) Using product rule and implicit differentiation:
d

dt
[e−ty] = e−t + 3e−tsin(t)

(v) Integrate both sides:
∫ d

dt
[e−ty]dt =

∫
(e−t + 3e−tsin(t))dt.

Now, using integration by parts, setting u = sin(t) =⇒ du = cos(t)dt; v = e−t =⇒ dv = −e−t, we can
compute the right hand side integral and thus obtain∫

(e−t + 3e−tsin(t))dt = −e−t − 3

2
e−t(sin(t) + cos(t)) + C

And so the general solution is:

y(t) = Cet − 3

2
(sin(t) + cos(t))− 1

Plugging the value for t = 0 and solving for C:

y(0) = y0 = C − 1− 3

2
= C − 5

2
⇐⇒ C = y0 +

5

2

The particular solution is:

y(t) = (y0 +
5

2
)et − 3

2
(sin(t) + cos(t))− 1

Since we have a linear factor of et, the only way for this function to remain positive is if we set y0 = − 5
2 , so

that we make null the term involving et, i.e., the function

y(t) = −3

2
(sin(t) + cos(t))− 1

will remain finite at t goes to infinity.
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