
Triple Integrals in Cylindrical or Spherical Coordinates

1. Find the volume of the solid ball x2 + y2 + z2 ≤ 1.

Solution. Let U be the ball. We know by #1(a) of the worksheet “Triple Integrals” that the volume

of U is given by the triple integral

∫∫∫
U

1 dV . To compute this, we need to convert the triple integral

to an iterated integral.

The given ball can be described easily in spherical coordinates by the inequalities 0 ≤ ρ ≤ 1, 0 ≤ φ ≤ π,

0 ≤ θ < 2π, so we can rewrite the triple integral

∫∫∫
U

1 dV as an iterated integral in spherical

coordinates ∫ 2π

0

∫ π

0

∫ 1

0

1 · ρ2 sinφ dρ dφ dθ =

∫ 2π

0

∫ π

0

(
ρ3

3
sinφ

∣∣∣∣ρ=1

ρ=0

)
dφ dθ

=

∫ 2π

0

∫ π

0

1

3
sinφ dφ dθ

=

∫ 2π

0

(
−1

3
cosφ

∣∣∣∣φ=π
φ=0

)
dθ

=

∫ 2π

0

2

3
dθ

=
4

3
π

2. Let U be the solid inside both the cone z =
√
x2 + y2 and the sphere x2 + y2 + z2 = 1. Write the triple

integral

∫∫∫
U
z dV as an iterated integral in spherical coordinates.

Solution. Here is a picture of the solid:

x
y

z

We have to write both the integrand (z) and the solid of integration in spherical coordinates. We know
that z in Cartesian coordinates is the same as ρ cosφ in spherical coordinates, so the function we’re
integrating is ρ cosφ.

The cone z =
√
x2 + y2 is the same as φ = π

4 in spherical coordinates.(1) The sphere x2+y2+z2 = 1 is
ρ = 1 in spherical coordinates. So, the solid can be described in spherical coordinates as 0 ≤ ρ ≤ 1, 0 ≤

φ ≤ π
4 , 0 ≤ θ ≤ 2π. This means that the iterated integral is

∫ 2π

0

∫ π/4

0

∫ 1

0

(ρ cosφ)ρ2 sinφ dρ dφ dθ .

(1)Why? We could first rewrite z =
√
x2 + y2 in cylindrical coordinates: it’s z = r. In terms of spherical coordinates, this

says that ρ cosφ = ρ sinφ, so cosφ = sinφ. That’s the same as saying that tanφ = 1, or φ = π
4

.
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For the remaining problems, use the coordinate system (Cartesian, cylindrical, or spherical) that seems
easiest.

3. Let U be the “ice cream cone” bounded below by z =
√

3(x2 + y2) and above by x2 +y2 +z2 = 4. Write
an iterated integral which gives the volume of U . (You need not evaluate.)

x
y

z

Solution. We know by #1(a) of the worksheet “Triple Integrals” that the volume of U is given by the

triple integral

∫∫∫
U

1 dV . The solid U has a simple description in spherical coordinates, so we will use

spherical coordinates to rewrite the triple integral as an iterated integral. The sphere x2 + y2 + z2 = 4
is the same as ρ = 2. The cone z =

√
3(x2 + y2) can be written as φ = π

6 .(2) So, the volume is∫ 2π

0

∫ π/6

0

∫ 2

0

1 · ρ2 sinφ dρ dφ dθ .

4. Write an iterated integral which gives the volume of the solid enclosed by z2 = x2 + y2, z = 1, and
z = 2. (You need not evaluate.)

x
y

z

Solution. We know by #1(a) of the worksheet “Triple Integrals” that the volume of U is given by

the triple integral

∫∫∫
U

1 dV . To compute this, we need to convert the triple integral to an iterated

integral. Since the solid is symmetric about the z-axis but doesn’t seem to have a simple description
in terms of spherical coordinates, we’ll use cylindrical coordinates.

Let’s think of slicing the solid, using slices parallel to the xy-plane. This means we’ll write the outer

integral first. We’re slicing [1, 2] on the z-axis, so our outer integral will be

∫ 2

1

something dz.

To write the inner double integral, we want to describe each slice (and, within a slice, we can think of
z as being a constant). Each slice is just the disk enclosed by the circle x2 + y2 = z2, which is a circle

(2)This is true because z =
√

3(x2 + y2) can be written in cylindrical coordinates as z = r
√

3. In terms of spherical coordinates,

this says that ρ cosφ =
√

3ρ sinφ. That’s the same as saying tanφ = 1√
3

, or φ = π
6

.
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of radius z:

-z z
x

-z

z
y

We’ll use polar coordinates to write the iterated (double) integral describing this slice. The circle can
be described as 0 ≤ θ < 2π and 0 ≤ r ≤ z (and remember that we are still thinking of z as a constant),

so the appropriate integral is

∫ 2π

0

∫ z

0

1 · r dr dθ.

Putting this into our outer integral, we get the iterated integral

∫ 2

1

∫ 2π

0

∫ z

0

1 · r dr dθ dz .

Note: For this problem, writing the inner integral first doesn’t work as well, at least not if we want to
write the integral with dz as the inner integral. Why? Well, if we try to write the integral with dz as
the inner integral, we imagine sticking vertical lines through the solid. The problem is that there are
different “types” of vertical lines. For instance, along the red line in the picture below, z goes from the
cone (z =

√
x2 + y2 or z = r) to z = 2 (in the solid). But, along the blue line, z goes from z = 1 to

z = 2. So, we’d have to write two separate integrals to deal with these two different situations.

x
y

z

5. Let U be the solid enclosed by z = x2 + y2 and z = 9. Rewrite the triple integral

∫∫∫
U
x dV as an

iterated integral. (You need not evaluate, but can you guess what the answer is?)

Solution. z = x2 + y2 describes a paraboloid, so the solid looks like this:

x
y

z

Since the solid is symmetric about the z-axis, a good guess is that cylindrical coordinates will make
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things easier. In cylindrical coordinates, the integrand x is equal to r cos θ.

Let’s think of slicing the solid, which means we’ll write our outer integral first. If we slice parallel to the

xy-plane, then we are slicing the interval [0, 9] on the z-axis, so our outer integral is

∫ 9

0

something dz.

We use the inner two integrals to describe a typical slice; within a slice, z is constant. Each slice is a disk
enclosed by the circle x2 + y2 = z (which has radius

√
z). We know that we can describe this in polar

coordinates as 0 ≤ r ≤
√
z, 0 ≤ θ < 2π. So, the inner two integrals will be

∫ 2π

0

∫ √
z

0

(r cos θ) · r dr dθ.
Therefore, the given triple integral is equal to the iterated integral∫ 9

0

∫ 2π

0

∫ √
z

0

r cos θ · r dr dθ dz =

∫ 9

0

∫ 2π

0

(
1

3
r3 cos θ

∣∣∣∣r=
√
z

r=0

)
dr dθ dz

=

∫ 9

0

∫ 2π

0

1

3
z3/2 cos θ dθ dz

=

∫ 9

0

(
1

3
z3/2 sin θ

∣∣∣∣θ=2π

θ=0

)
dz

= 0

That the answer is 0 should not be surprising because the integrand f(x, y, z) = x is anti-symmetric
about the plane x = 0 (this is sort of like saying the function is odd: f(−x, y, z) = −f(x, y, z)), but
the solid is symmetric about the plane x = 0.

Note: If you decided to do the inner integral first, you probably ended up with dz as your inner integral.

In this case, a valid iterated integral is

∫ 2π

0

∫ 3

0

∫ 9

r2
r cos θ · r dz dr dθ .

6. The iterated integral in spherical coordinates

∫ π

π/2

∫ π/2

0

∫ 2

1

ρ3 sin3 φ dρ dφ dθ computes the mass of a

solid. Describe the solid (its shape and its density at any point).

Solution. The shape of the solid is described by the region of integration. We can read this off from
the bounds of integration: it is π

2 ≤ θ ≤ π, 0 ≤ φ ≤ π
2 , 1 ≤ ρ ≤ 2. We can visualize 1 ≤ ρ ≤ 2 by

imagining a solid ball of radius 2 with a solid ball of radius 1 taken out of the middle. 0 ≤ φ ≤ π
2 tells

us we’ll only have the top half of that, and π
2 ≤ θ ≤ π tells us that we’ll only be looking at one octant:

the one with x negative and y positive:

x
y

z

To figure out the density, remember that we get mass by integrating the density. If we call this solid

U , then the iterated integral in the problem is the same as the triple integral

∫∫∫
U
ρ sin2 φ dV since
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dV is ρ2 sinφ dρ dφ dθ. So, the density of the solid at a point (ρ, φ, θ) is ρ sin2 φ .
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