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Abstract: this paper introduces EvolvingAnts, an algorithm that combines ant 
colony optimization (ACO) with a genetic algorithm (GA). In the algorithm, an 
ant is provided with genetic information that it uses together with stigmergic in-
formation to construct solutions to a path in a maze. The genetic information of 
a single ant is represented as a simple-grammar L-System (though other genetic 
encodings are possible), which is grown a fix number of iterations. Groups of 
ants are evolved at each step of the algorithm and only those that were able to 
construct longer paths are selected for reproduction. At each decision step an 
ant takes into consideration both its individual configuration as represented by 
its L-System, and the pheromone trail in the environment to decide where to go 
next. In addition, an overview of the software built for the algorithm will be 
presented, as well as results of experiments using Evolving Ants.  

Keywords: ant colony optimization, ant system, genetic algorithm, genetic in-
formation, L-System genetic encoding, social behavior, emergence, evolving 
ants, heuristic optimization.  

1 Introduction 

Ant Colony Optimization (ACO) is a metaheuristic inspired by natural colonies of 
ants in search for food, and a useful technique to find approximate optimal solutions 
to the shortest-path problem in a directed graph, a well-known NP problem. In this 
paper I present Evolving-Ants (EVA), an algorithm in which I will combine a stand-
ard Genetic Algorithm (GA) with the ACO algorithm know as Ant System.  

In the usual implementation of most ACO algorithms individual ants have no 
memory. Instead, one can think that the particular configuration of the pheromones in 
the environment constitute a kind of “shared memory” that changes over time. In 
EVA, a single ant still uses this stigmergic (indirect communication) information but 
in combination with a form of “individual memory” contained in its genetic infor-
mation. In this context, an ant’s genes are encoded using a simple L-System. The 
ant’s L-System will be iterated a fixed number of times, and the structure of the re-
sulting string will contribute to the ant’s decision via a mapping function from the 
space of possible strings to a probability distribution over the string’s fix alphabet. 



The distribution expresses the probability of the ant taking a certain decision at each 
step in time. Note that EVA allows for different genetic encoding, not just one based 
on L-System. Whatever the encoding may be, this needs to be translated into a proba-
bility distribution that the ant will use to make a decision. For this particular imple-
mentation you can find an L-System and a Simple gene based on a fix-length string. 

EvolvingAnts’ genetic algorithm implements the usual genetic algorithm opera-
tions, i.e., crossover and mutation, specially engineered to work with an L-System 
(see section 3). At each run of the algorithm, only those ant’s that were capable of 
constructing a “good” path according to some fitness function, usually the length of 
the path, will be selected for reproduction and thus, will pass their genes (L-System) 
vertically to the next generation. As part of the entire process of birth (random genera-
tion), combination and mutation of an ant, one can think of the resulting string of the 
L-System as the ant’s phenotype as expressed by its genes through a developmental 
process. The genes encode information useful for the ant’s search of the best path and, 
as generations pass, these genes change to meet the demand of a particular environ-
ment. 

In the next sections I will present the structure of the algorithm in detail, including 
the genetic encoding and functions used by the ants, as well as specific purpose soft-
ware created for EVA and experiments performed on the algorithm. 

2 EvolvingAnts 

The following is a pseudo code of the EVA algorithm.  

Initialize Parameters (ACO,GA,EvolvingAnts) 
Initialize Random Population of Ants 
While stop-condition-not-reached do 
 Node = start node  
For each Ant in Population do 
 While node-is-not-goal do 
  Node = selectNextNode(node,ant) 
Run Genetic Algorithm with solutions found 

 
Function selectNextNode(node n,ant a) 
 For each node reachable from n do 
  Individual-Decision = a.develop() 
  Collective-Decision = getPheromoneTrail(n) 
  R = uniformRandomNumber(0,1) 
  Choose node n’ such that R > (Individual-Decision + 
Collective-Decision) / normalizer factor 
 Return n’ 

In the function selectNextNode one can see how an ant takes into account both its 
phenotype (as encoded by its genes) as well as the trail pheromone of the colony. This 
function is explored in more details in section 3.5. Also, notice how the genetic algo-



rithm is run each time after a run of the traditional ACO algorithm. In this way, the 
genetic algorithm can use the solutions of each ant as input for a fitness function. 

3 Evolutionary Strategy 

In this section I explain the details of the genetic encoding and genetic algorithm 
use for EVA’s genetic algorithm. You can find two evolutionary strategies for this 
particular implementation of EVA: Simple and L-System. Each of these genetic de-
sign choices represents a possible way to encode information into the ant’s genes.  

EVA’s genetic encoding and decoding should be thought of as a geno-
type/phenotype mapping in which each individual ant encode some information about 
itself and the environment, and later decodes it through a developmental or growth 
process (phenotype mapping) to work on the environment. For instance, the L-System 
phenotype mapping would be the iteration of the axiom with some rule until a string 
(phenotype) is obtained. The following is a schematic of this process.  

 
EVA’s phenotype/genotype mapping and developmental process 

There can be many more choices than only these two: one just needs a function 
that maps from some form of information storage to a probability distribution. The 
study of these choices can be a thread of research on its own right. For instance, an-
other possible strategy would be to build a cellular automaton into each ant, iterate it a 
number of time, and build a distribution based on the final state of the automata. This 
distribution can be a function of the number of states in some neighbors, or a majority 
rule, etc. 

The software framework constructed for EVA allows the user to try new evolu-
tionary strategies with no impact to the general structure of the algorithm (see appen-
dix b). One would only need to extend a couple of classes to implement a new genetic 
encoding.  



3.1 Simple Genetic Encoding 

In this strategy, an ant’s gene is a string of fix length from the four-letter alphabet 
Σ = !,!, !,! . The probability distribution is the proportion of each letter in the 
string, each of which map to an action, i.e.: ! move up, ! move down, ! move left 
and ! move right. This encoding is mainly used as a control case to test against more 
sophisticated strategies such as L-System.  

3.2 L-System Genetic Encoding 

In this strategy, an ant’s genes ! = Σ, σ,!! , represent a L-System composed of a 
four-letter alphabet Σ = !,!, !,! , and axiom σ ∈ Σ∗, where Σ∗ is the set of all pos-
sible strings generated with alphabet Σ, and four rules !!:  ! →   Σ∗, 0 < ! < 3,  where 
! ∈   Σ. For computational purposes, Σ∗ is allowed to take a fixed maximum number 
of symbols from Σ. The symbols of Σ are mapped to specific actions in the environ-
ment. For the version of EVA discussed in this paper, the symbols stand for actions in 
a maze mapped as follow: ! move up, ! move down, ! move left and ! move right. 

The crossover operator takes two genes !!,!!, and a random number ! uniformly 
distributed between 0 and 3, and replaces the rules (!!,!!) of gene !!  with rules 
(!!,!!) of gene !! . A single gene can also be mutated, meaning that a rule !! will be 
changed randomly.  

The expression of a gene, which can be also though of as its phenotype, is equiva-
lent the iteration of the L-System a fix number of times resulting in string !. Once the 
string is obtained, a function ℎ(!): ! → ! Σ   maps the space of possible strings to a 
probability distribution over Σ, which is used as weights that the ants will take into 
consideration when exploring the maze. In this version of EVA, ℎ is implemented as 
the proportion of each letter in !. 

An L-System is a good choice for the purpose of EVA for three main reasons: (i) 
there is a clear genotype/phenotype mapping between the system’s axiom and final 
string, through a developmental phase; (ii) they encode self-similar information which 
can be useful in a maze structure where a lot of the decision are similar; and (iii) they 
compact a lot of information effectively. In short, the L-System stands as a suitable 
metaphor for an ant’s genetic information.  

3.3 Genetic Algorithm 

EVA employs a standard genetic algorithm to evolve fitter ants. The algorithm us-
es a roulette wheel selection mechanism whereby individuals are assigned portions of 
the roulette according to their fitness value. The fitness value is the length of the path 
constructed by the individual immediately before executing the genetic algorithm. 
Each pair of individuals, selected from the roulette wheel, is paired using the crosso-
ver operation as described before, and the descendants replace both parents. An elitist 
mechanism is employed whereby a fix number of elite individuals are allowed to be 
in the next generation without crossing them with other individuals. All individuals, 
including elite one, are subject to mutation. 



3.4 Environment 

The environment considered for this first implementation of EVA was that of a 
perfect maze, i.e., a maze that has one and only one path from any cell in the maze to 
any other cell. For the purpose of EVA, a cell is to be though of as a node in a graph. 
Thus, the task of the individual ants is to construct a path between the nest (start) node 
and the food (goal) node. The dimension of a maze is the number of cells, i.e., nodes 
in the graph. The structure of the maze is such that an ant only has a maximum of four 
reachable nodes at any node in the graph. This allows a nice mapping between the 
alphabet of an ant’s genes and possible actions.  

 
Example of a perfect maze used to test EVA 

3.5 Ants’ Decision Making Process 

Ant ! positioned at node ! will make the decision to move to node ! proportionally 
to the rule: !(!)!,! = ! ∙ ! ! + ! ∙ !(!, !), where parameters !  and ! regulate the 
influence of genomic information ! and pheromone trail !, individual and shared 
memory respectively. Both parameters ! and ! are real numbers between 0 and 1. 
The final computation is normalized to be a number between 0 and 1. Note that by 
setting ! = 0 and ! = 1, EVA will only use pheromone information and thus become 
a standard ACO algorithm. If, ! = 1 and ! = 0, EVA uses only genetic information. 
In this sense EVA generalizes both ACO and GA. 

4 Experiments 

4.1 Setup 

Mazes of different structure were created to test EvolvingAnts. Specifically, the 
structure of the mazes varied from 20 cells to 300 cells, in increments of 10 cells, i.e., 
20, 30, 40, …, 290 and 300. In addition, for each maze of a certain dimension (num-
ber of cells), 10 random submazes with different number of columns (5, 10 and 20) 
were created. In the present implementation, a maze can have a certain number of 
columns according to its dimension. A maze of dimension ! can only have number of 
cells ! if !  !"#  ! = 0, so that the resulting maze is square. For instance, a maze of 
dimension 110 can only have submazes with 5 or 10 columns. For short, let us denote 



a maze as !(!"#$%&"'%, !"#$%&'), e.g., !(200,20) denotes a maze of dimension 
200 and 20 rows. Note that the maze !(220,15) is not a feasible maze. Also note that 
in the experiments the starting node (nest) is always node zero (located at the upper-
left corner of the maze), and the end node (food) is the last node (located at the lower-
right corner), e.g., in a maze !(120,10), the food is located at node 119. 

A trial of EVA is one run of the algorithm with all parameters fixed. In total, 820 
possible mazes were created within the constraints previously described. Each maze 
was tested in 100 trials. The metrics used to test the performance of EVA were: (1) 
average number of iterations to find the solution and (2) whether or not a solution was 
found. These metrics make sense because each maze has only one possible solution. 
Moreover, these metrics are easily comparable with other algorithms. In this paper we 
compare EVA with the canonical ACO algorithm, i.e., AntSystem. The idea is to see 
the effect of the combination of individual and shared memory in the algorithm’s 
ability to solve the problem at hand.   

Note that the average number of iterations in metric (1) refers to the iterations of 
EVA in different trials of the algorithm, and that each iteration of EVA contains a run 
of the Genetic Algorithm with a fixed number of iterations. The parameters used in 
the experiments can be seen on appendix a.  

4.2 Results 

 
Percentage of EVA-solvable mazes (y-axis). Parameter Set (x-axis). 

 
Percentage of EVA-unsolvable mazes (y-axis). Parameter Set (x-axis). 



The graphs above shows the percentage of solutions found per set of parameters. 
The mazes for which results are incorporated in all graphs on this section are !(!, !) 
where 20 ≤ ! ≤ 300 and 5 ≤ ! ≤ 20. For detailed results please see appendix c. 

Overall, EVA (parameters sets A through H) is able to find solutions in more than 
half of the mazes, while ACO (parameters I and J) only finds solutions approximately 
in 45% of all mazes. Moreover, simple gene-EVA (A-D) achieves an average of 63% 
success, while L-System-EVA (E-H) an average of 64%. However, L-System-EVA 
parameter F and H outperforms every other configuration of the algorithm, and reach-
es the maximum of 71% average success. The best configuration is L-System-EVA 
parameter H, i.e., ! = 0.75 and ! = 0.25, meaning that a larger weight for the genet-
ic algorithm relative to the ACO algorithm results in better performance. The im-
portance of the genetic algorithm becomes obvious once we realize that L-System-
EVA set G, i.e., ! = 0.25 and ! = 0.75, underperforms every other configuration 
(except from pure ACO). Therefore, the weight of the evolutionary strategy is very 
important for L-System, in which an ant’s gene can grow and develop more useful 
structure to find solutions. However, the evolutionary strategy is not as important for 
the simple gene in which all results are fairly clustered around the mean success per-
centage, regardless of the values of ! and !.  

The following graph shows the average number of iteration per parameter set in 
case a solution was obtained. The graph also shows a linear trend line over all results. 

 
Average number of iterations, and linear trend, when a solution is found 

From the graph above one can see that there is a downward trend on average num-
ber of average iterations to find a solution. The trend goes in relation with the parame-
ters set; meaning that in average set A took longer than set J. As expected, the maxi-
mum number of EVA-iterations dominates the number of iterations of a particular set 
in a given trial, however, the overall downward trend shows an interesting relation-
ship on the number of iterations and the evolutionary strategy, i.e., if a solution is 
found, the L-System takes fewer iterations than the simple gene. For instance, set H 
employs less number of iterations than set D; even tough both sets use 100 EVA-
iterations. In other words, the fact that the L-System encodes information more effec-



tively contributes to both number of solution found and speed in terms of number of 
iterations. 

These results show that EVA outperforms ACO (both in terms of number of solu-
tions found and average number of iterations), regardless of the evolutionary strategy 
employed (Simple or L-System’s genes), but that different strategies may yield radi-
cally different results. A strategy based on a fixed characterization of the genetic in-
formation underperforms relative to another strategy that is allowed to grow and de-
velop a better encoding of the environment. For these experiments, a strategy that 
employs an L-Systems and weights more the genetic information when making a 
decision (set H) prove to be the best strategy. However, the evolutionary strategy 
must be given enough number of iterations to produce such results, otherwise one can 
obtain a considerable poorer performance (set G).  

These results point to the fact that the L-System makes a big difference in the en-
coding of useful information from the environment and the colony itself and, if given 
enough time, the resulting phenotype (L-System string) will guide the ants towards 
solutions faster than other configurations tested in these experiments.  

5 Conclusion 

Evolving Ants (EVA) is an innovative combination of a canonical genetic algo-
rithm, i.e., using roulette wheel selection, random crossover point, fair probability of 
crossover and low probability of mutation; with a simple ant colony optimization 
algorithm, in which a population of ants is provided with genetic information that it 
uses in combination with stigmergic information to select a next node to visit in a 
path. In this context, the genetic information is to be thought of as “individual” 
memory whereas the stigmergic information, i.e., the pheromone trail, is to be thought 
of as the “shared” memory among individual agents in the colony. This paper covered 
the following topics: (1) introduction of EVA, (2) justification of EVA as a viable 
generalization of the ACO metaheuristic, (3) two different design alternatives for 
EVA’s evolutionary strategy (Simple and L-System’s genes), and (4) results to exper-
iments performed in a maze in which the ant colony needed to find a path from their 
nest to a (fixed) food source. 

From the results of the experiments performed using EVA, one can conclude that 
this algorithm outperformed a pure ACO algorithm when tested under the conditions 
described in section 3.4 and 4.1. Moreover, it was shown that the performance of 
EVA varies drastically with the choice of the genetic encoding of the evolutionary 
algorithm, as described in section 3. An encoding that maps directly from genes to 
phenotype, and is fixed throughout the execution of the system, exhibits a lower per-
formance than a strategy that uses an intermediary, growth phase, in which genes are 
expressed into a phenotype which is later mapped to a decision in the maze. The evi-
dence that supports this concludes follows from the fact in average the EVA-L-
System outperformed the Simple gene encoding. As a continuation of this research, 
new evolutionary strategies can be tested, e.g., cellular automata; and the algorithm 
extended to solve other non-mazes environment easily modeled by graphs. 
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Appendix A: Parameters 

The following table contains ten sets of parameters, A trough J, used to test EVA 
(see section 4.1). Parameters A through D correspond to runs of the algorithm using 
the Simple gene. Parameters E through H correspond to runs of the algorithm using 
L-System encoding. Parameters I and J correspond to a run of traditional ACO. Other 
fixed parameters are: pheromone evaporation rate 0.65, mutation rate 0.05, and cross-
over rate 0.6. agImportance and acoImportance correspond to ! and ! respectively 
(see section 3.5) 

 

Appendix B: Software Framework 

 
EVA’s package diagram 



To support EVA, two separated object-oriented frameworks were combined. The 
first, AntFramework, incorporates pre-prepared objects to work with traditional ACO 
algorithms. For the present implementation, only the ACO algorithm known as Ant 
System was used. In the future, EVA can be extended to incorporate other ACO algo-
rithms. The second framework, specially built for this project, integrates abstract ob-
jects for the Genetic Algorithm’s tasks, and it can be extended to suit other algorithms 
or different genetic encodings.  

In addition, this implementation of EVA called for special software to build ran-
dom mazes given arbitrary dimensions. The mazes were translated into graphs, which 
encoded the appropriate logic to represent the mazes’ structure. Finally, the algorithm 
explores the graphs’ adjacency matrix, which means that it can be use to solve virtual-
ly any problem that can be modeled as a graph. A schematic representation of EVA is 
show in the next diagram. 

 
EVA’s class diagram corresponding to the package EvolvingAnts 

EVA combines the AntFramework and GA Framework by using a common set of 
Ants, depicted as GA_Ant in the above diagram. This ant object is an extension of the 
simple Ant in the AntFramework, but incorporates a gene object to encode the ant’s 
L-System. Thus, as discussed earlier, in this architecture an Ant is provided with ge-
netic information.  

One can change the GA_AntGene class to encode a different kind of genetic in-
formation. Thus, one concrete implementation of GA_AntGene corresponds to the 
Simple gene and another to the L-System gene. The only requirements are that the 
encoding must be consistent with the process described in section 3.4 and the envi-
ronment being used. However, one can always change both the genetic encoding and 
phenotype developmental process, as well as the actions valid in the environment with 
little impact to other objects. 

Appendix C: Web Resources 

For more EVA-information: http://www.enriqueareyan.com/?q=evolvingants 


