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(1.13) Double Counting: Let us count in two different ways the number of edges in a complete graph with n vertices.

(i) We need to have an edge between every pair of vertices. Each edge is a 2- subset of a set with n elements,
by definition there are

(
n
2

)
edges.

(ii) Let 0 ≤ k ≤ n. To count the number of edges in a complete graph on n vertices we could count edges
from disjoint sets of vertices as follow:

(1) Take a set of k out of the n vertices. Form a complete k graph, for which we need
(
k
2

)
edges.

(2) Form the complete graph out of the remaining n− k vertices. We will need
(
n−k
2

)
edges.

(3) Connect the vertices of the k set with the vertices of the n − k set. You will need k(n − k) edges.
Since edges in (1),(2) and (3) are disjoint and together completely connect the graph, we will need(
k
2

)
+ k(n− k) +

(
n−k
2

)
many edges to completely connect n vertices.

By the Double Counting Principle, the above counts (i) and (ii) must agree, hence:(
n

2

)
=

(
k

2

)
+ k(n− k) +

(
n− k

2

)
(1.21) Let k ≥ 2n. Arrange the k sweets in a linear fashion: 1, 2, ..., k. The first child starts to pick at position 1,

but she has to have two candies. Hence, the first two positions are unavailable for the second child. Likewise,
the last child can pick any of the remaining positions except for the last position since she has to have at
least two candies. Thus far we have 3 positions unavailable.

Now, child two may start to pick at position 3. I she does, then child 4 cannot start to pick at position
4 since each child two has to have at least two. Hence, one more position is unavailable. This pattern repeats
for children 2 through n− 1. Hence, for each of these n− 2 children we have to remove one position.

In conclusion, there are k − 3 − (n − 2) = k − n − 1 positions for the children to choose from. Since
the first child always starts at position one, there will be n−1 children choosing these positions. Hence, there
are: (

k − n− 1

n− 1

)
ways to distribute k sweets to n children if each child is suppose to get at least two of them.

(1.32) Let X be the set of all functions f : [m]→ [n], where m ≥ n and let Ai = {f : f(j) 6= i for all i}. Then
n⋃
i

Ai

is the set of all functions that are not onto, which means that the complement X −
n⋃
i

Ai is the set of all onto

functions. We wish to compute the cardinality of this set, i.e.,

|X −
n⋃
i

Ai| =
∑

I⊆[n]
(−1)|I||AI | By the Inclusion Exclusion Principle

We know that |Ai| = (n − 1)m, counting all the functions from [m] to [n − 1]. But then, |AI | = (n − |I|)m.
Hence,∑

I⊆[n]
(−1)|I||AI | =

∑
I⊆[n]

(−1)|I|(n− |I|)m Replacing |AI | = (n− |I|)m

=
n∑

i=0

(−1)i
(
n
i

)
(n− i)m Replacing i = |I|

=
n−1∑
i=0

(−1)i
(
n
i

)
(n− i)m Since (n− n)m = 0, so the last term does not contribute
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(1.33) Consider the universe X = Xn,k of all integer solutions to the equation x1 +2 +... + xn = k with all xi ≥ 0.

Let Ai be the set of solutions with xi ≥ l. We wish to compute the cardilanitly of X −
n⋃
i

Ai, i.e., the set of

solutions with all a ≤ xi < l.

|X −
n⋃
i

Ai| =
∑

I⊆[n]
(−1)|I||AI | By the Inclusion Exclusion Principle

By proposition (1.5), we know that |Xn,k| =
(
n+k−1

k

)
. Hence, we can conclude that |Ai| = |Xn,k−l| =(

n+k−l−1
k−l

)
which means that |AI | =

(
n+k−|I|l−1

k−|I|l
)
. Replacing this into our IEP equation:∑

I⊆[n]
(−1)|I||AI | =

∑
I⊆[n]

(−1)|I|
(
n+k−|I|l−1

k−|I|l
)

Replacing |AI | =
(
n+k−|I|l−1

k−|I|l
)

=
n∑

i=0

(−1)i
(
n
i

)(
n+k−il−1

k−il
)

Replacing i = |I|

(1.36) Let I ⊆ J . Consider
∑

I⊆K⊆J
(−1)|K\I|. If we let i = |K\I|, then we have to sum over |J\I| considering each

possible subset form by K ∪ |J\I| (completing K with elements of J) as follow:

∑
I⊆K⊆J

(−1)|K\I| =
|J\I|∑
i=0

(−1)i
(|J\I|

i

)
Substituting variables, we have to sum over |J\I|

=
|J\I|∑
i=0

1|J\I|−i(−1)i
(|J\I|

i

)
Since 1 to any power is just 1

= (1− 1)|J\I| By the Binomial Theorem
= 0|J\I|

Now, if J = I then |J\I| = ∅ and hence 0|J\I| = 00 = 1. Otherwise, if I ⊂ J then |J\I| = n for some n and
hence 0n = 0.

(4.1) Divide the equilateral triangle of length 1 into four equilateral triangles of length 1
2 each, as follow:

Any two points that we pick in a equilateral triangle of length 1
2 are going to have distance apart at most

1
2 . Indeed, this maximum distance is achieve between points at different vertices of the triangle. Any other
points that we pick are going to have distance less than 1

2 .

Now, if we pick 5 points on the triangle of length 1, then it must be the case that these points are in some of
the four sub triangles. Since there are 4 sub triangles and 5 points, by the Pigeonhole Principle, there must

be at least two points on the same region. These two points will have distance at most 1
2 , showing the result.

(4.4) Consider the two mappings: m1: i 7→ (2i, 2i − 1) and m2:i 7→ (i, 2n − i + 1), where i = 1, .., n. Note that
each mapping cover all numbers from 1, ..., 2n. Now choose n + 1 distinct integers from the set {1, 2, ..., 2n}.
For each mapping, we have n pigeonholes, one for each i. Since we are choosing n + 1 pigeons, by the
Pigeonhole Principle, there is at least one pigeonhole that contains two pigeons.

In terms of the first mapping, this means that there exists an i such that two out of the n + 1 numbers
chosen, say ai, aj are such that i 7→ (2i, 2− 1) = (ai, aj), and hence ai + 1 = aj (aj is consecutive to ai).
In terms of the second mapping, two of the numbers chosen, ai, aj , are such that i 7→ (i, 2n− i+1) = (ai, aj),
and hence ai + aj = 2n + 1.

(4.5) Every set of n+ 1 distinct integers chosen from {1, 2, ..., 2n} contains two numbers such that one divides the
other. To see why this is the case, write every number x in the form x = kk2a, where kx is an odd number
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between 1 and 2n−1. Take odd pigeonholes 1, 3, 5, ..., 2n−1 and put x into the pigeonhole kx. Since there are
n+1 numbers to put into n holes, by the PHP some hole must have two numbers x < y ⇐⇒ kx2a1 < ky2a2 .
But, since the numbers are in the same hole by definition kx = ky = k ⇒ k2a1 < k2a2 ⇐⇒ 2a1 < 2a2 ⇐⇒
a2 > a1. Hence, x|y since k2a2 = k2a1 · 2p, where p + a1 = a2

(4.7) Suppose that n is a multiple of k. Let us construct a graph without (k + 1)-cliques, in which the number
of edges achieves the upper bound given by Turán’s Theorem. Before we begin, let us define: n number of
vertices, k number of clusters, i.e., clusters of vertices, n

k is number of vertices per cluster.

To achieve Turán’s upper bound, we are going to begin by splitting the n vertices into k equal size parts
and join all pairs of vertices from different parts, thus forming a complete k-partite graph. Hence, there are
n
k (n− n

k ) edges between the first cluster and the second cluster. Now we need to count the number of edges
between the second and third cluster, there are n

k (n − 2n
k ) many edges (we take away 2 groups of vertices

since we already counted the first and we nee not count the second). This patterns repeats for counting edges
between cluster i and i + 1: n

k (n− ink ).

Since these are all disjoint edges, we sum the total of all clusters, i.e.: |E| =
k∑

i=1

n
k (n− ink ). But:

k∑
i=1

n
k (n− ink ) =

n

k

k∑
i=1

(n− i
n

k
) Since n

k does not depend on i

=
n2

k

k∑
i=1

(1− i

k
) Factoring n out of the sum

=
n2

k
(

k∑
i=1

1− 1

k

k∑
i=1

i) Separating the sum

=
n2

k
(k − k(k + 1)

2k
) Sum of constant and sum of first k natural numbers.

=
n2

k

2k2 − k2 − k

2k
Summing fractions

=
n2

k

k(k − 1)

2k
Grouping terms

=
n2

k

(k − 1)

2
Cancelling k’s

=
n2k − n2

2k
Taking product on the numerator

=
n2

2
− n2

2k
Separating fractions

= (1− 1

k
)
n2

2
Common factor n2

2

= |E|

Which shows that the number of edges achieves the upper bound set by Turán’s theorem.

(4.10) Given a sequence A = (a1, ..., an) of n ≥ rs + 1 different real numbers, define the partial order � on A by:

ai � aj ⇐⇒ ai ≤ aj and i ≤ j

Check that indeed this is a partial order:

Reflexivity: Let ai ∈ A for some 1 ≤ i ≤ n. Since ai ≤ ai and i ≤ i, it follows that ai � ai.

Antisymmetry: Let ai, aj ∈ A be such that ai � aj and aj � ai. Then by definition of �, ai ≤ aj and aj ≤ ai which
means that ai = aj . Also, i ≤ j and j ≤ i, hence i = j, so ai = aj .
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Transitivity: Let ai, aj , ak ∈ A. Suppose that ai � aj and aj � ak. Then, ai ≤ aj and aj ≤ ak, which means that
ai ≤ ak. Also, i ≤ j and j ≤ k, so i ≤ k. Since ai ≤ ak and i ≤ k, it follows that ai � ak

This shows that � is a partial order. Since by |A| = n ≥ rs + 1, we can apply Lemma 4.6 (Dilworth) and
conclude that there exists a chain of length s+ 1 or an antichain of length r+ 1. A chain in A of length s+ 1
is set {ak, ak+1, ..., ak+s+1} so that the elements form a total order, i.e.,

ak � ak+1 � ... � ak+s+1 ⇐⇒ ak ≤ ak+1 ≤ ... ≤ ak+s+1 and k ≤ k + 1 ≤ ... ≤ k + s + 1

But since all ais are different, we obtain that

ak < ak+1 < ... < ak+s+1 and k < k + 1 < ... < k + s + 1

This is by definition an increasing subsequence of s + 1 terms.

An antichain in A of length r+ 1 is set {al, al+1, ..., al+r+1} so that no two distinct elements are comparable:

al 6� al+1 6� ... 6� al+r+1 ⇐⇒ al > al+1 > ... > al+r+1 and l > l + 1 > ... > l + r + 1

This is by definition a decreasing subsequence of s + 1 terms, which shows the result.

(4.11) Define the partial order � over the given n2 + 1 points in R2 as follow:

(x, y) � (z, w) ⇐⇒ x ≤ z and y ≤ w

It is easy to see that this is indeed a partial order. Since there are n2 + 1 points, by Dilworth’s Lemma, we
can conclude that there exists a chain of n + 1 elements or an anti chain of n + 1 elements.

A chain of length n + 1 is set {(xk, yk), (xk+1, yk+1), ..., (xk+n+1, yk+n+1)} so that the elements form a total
order, i.e.,

(xk, yk) � (xk+1, yk+1) � ... � (xk+n+1, yk+n+1) ⇐⇒ xk ≤ xk+1 ≤ ... ≤ xk+n+1 and yk ≤ yk+1 ≤ ... ≤ yk+n+1

Suppose this chain does not exists. Then, we would have an anti chain of length n + 1:

(xl, yl) 6� (xl+1, yl+1) 6� ... 6� (xl+n+1, yl+n+1) ⇐⇒ Three possibilities:

(i) x1 > x2 and y1 ≤ y2, in which case we have:

xl+n+1 ≤ xl+n ≤ ... ≤ xl and yl+n+1 ≥ yl+n ≥ ... ≥ yl

(ii) x1 ≤ x2 and y1 > y2, in which case we have:

xl ≤ xl+1 ≤ ... ≤ xl+n+1 and yl ≥ yl+1 ≥ ... ≥ yl+n+1 ≥ yl

(iii) x1 > x2 and y1 > y2, in which case we have:

xl+n+1 ≤ xl+n ≤ ... ≤ xl and yl+n+1 ≤ yl+n ≤ ... ≤ yl But this is a n + 1-chain, contradicting our assumption.

Hence, case (iii) does not exists. In any of the other cases the results follow.

(4.20) Divide the number of subsets that contribute at least one monochromatic pair by the number of sets that
contain every such pair to get a lower bound on the number of monochromatic pairs:

#of monochromatic pairs ≥

(
n

r + 1

)
(
n− 2

r − 1

)

=

n!

(n− r − 1)!(r + 1)!

(n− 2)!

(n− r − 1)!(r − 1)!

=
n(n− 1)

(r + 1)r

=
n2 − n

(r + 1)r

Hence, for a given r ≥ 2, the number of monochromatic pairs is at least c · O(n2), where c(r) = 1
(r+1)r
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