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1. Suppose that ai = k · bi for all i where k is a constant. Then, CS inequality states:

N∑
i=1

aibi ≤
(

N∑
i=1

a2i

)1/2( N∑
i=1

b2i

)1/2

subsitute ai = k · bi
N∑
i=1

k · b2i ≤
(

N∑
i=1

k · b2i
)1/2( N∑

i=1

k · b2i
)1/2

multiply right-hand side, take constant out

k ·
N∑
i=1

b2i ≤ k ·
N∑
i=1

b2i from which we can conclude that

N∑
i=1

b2i =
N∑
i=1

b2i which shows that equality holds. Q.E.D.

Now suppose that the CS inequality is actually an equality, i.e.,
N∑

k=1

akbk =

(
N∑

k=1

a2k

)1/2( N∑
k=1

b2k

)1/2

.

Then, by the proof given in class, we need only to show that
ai
bi

=
XN

YN
⇐⇒ ai

bi
= k, for k constant.

First note that since by hypothesis XN 6= 0 and YN 6= 0, then we can divide by these quantities.

(⇒) Suppose that
ai
bi

=
XN

YN
. Since, both XN and YN are fix numbers, then the ratio XN

YN
= k for some

constant k, which shows the result.

(⇐) Suppose that
ai
bi

= k. Since by definition X2
N =

n∑
k=1

a2i = (by hypothesis)
n∑

k=1

(kbi)
2 = k2

n∑
k=1

b2i = k2Y 2
n ,

hence, X2
N = k2Y 2

N , from which it follows that
XN

YN
= k =

ai
bi

.

The case when either all ai or all bi are zero is considered by taking the constant k = 0. If both all ai
and bi are zero, then the result holds trivially. Q.E.D.

2. (a) (
n

k

)
=

n!

(n− k)!k!
By Pascal’s definition of binomial coefficient

=
n!

(n− k)!(k + n− n)!
Adding and subtracting n from k!

=
n!

(n− k)!(n− (n− k))!
Rearranging k + n− n = n− (n− k)

=

(
n

n− k

)
By Pascal’s definition of binomial coefficient

Hence, this shows that

(
n

k

)
=

(
n

n− k

)
. Q.E.D.
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(b) (
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n− 1

n− 1− k

)
+

(
n− 1

k − 1

)
By identity previously showed

= (n−1)!
(n−1−(n−k−1))!(n−k−1)! + (n−1)!

(n−1−(k−1))!(k−1)! By Pascal’s def. of binomial coef.

= (n−1)!
(n−1−n+k+1))!(n−k−1)! + (n−1)!

(n−1−k+1))!(k−1)! Rearranging denominators

=
(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(n− k)!(k − 1)!
Rearranging denominators

=
(n− k)(n− 1)! + k(n− 1)!

(n− k)!k!
Summing fractions

=
(n− 1)!((n− k) + k)

(n− k)!k!
Common factor (n− 1)!

=
n(n− 1)!

(n− k)!k!
By definition of n!

=
n!

(n− k)!k!
By Pascal’s def. of binomial coef.

=

(
n

k

)
Q.E.D

(1.11) Prove that
∑
x∈Y

d(x) =
∑
A∈F
|Y ∩A|, for any Y ⊆ X

Proof: Let Y ⊆ X. To prove the equality, let us count in two ways the number of ones in the 0-1 ma-
trix M ′ = (mx,A,Y ), where M ′ is constructed as follow:

(i) The number of rows is |Y |. Each row is labeled by points x ∈ Y .

(ii) The number of columns is |F | − b, where b =
∑
A∈F

i, such that i = 1 if Y ∩A 6= ∅ and 0 otherwise.

Each column is labeled by sets A ∈ F such that Y ∩ A 6= ∅. In other words, we include A ⊆ F as a
column if and only if Y ∩A 6= ∅

(iii) The entry M ′ = (mx,A,Y ) = 1 if and only if x ∈ A. Note that M ′ is the matrix M as defined on the
proof of proposition 1.7., but with elements of Y as rows and without the columns in which A ∩ Y = ∅

Observe that d(x) is exactly the number of 1s in the x-th row, and |Y ∩ A| is the number of 1s in the A-th
column. Hence, the result follows.

(1.12) First note that the second equality, i.e.,∑
A∈F

∑
x∈A

d(x) =
∑
A∈F

∑
B∈F
|A ∩B|

follows from the proof above (1.11), but restricting our attention to a particular family, i.e., set B in (1.12)
would be set A in (1.11); and set Y in (1.11) becomes set A in (1.12). It remains to show the first equality,
i.e., ∑

x∈X
d(x)2 =

∑
A∈F

∑
x∈A

d(x)

and we would have proven the result, since the final equality, i.e.,∑
x∈X

d(x)2 =
∑
A∈F

∑
B∈F
|A ∩B|

follows from transitive property of equality.
So, let us prove the first equality.
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Using the double counting principle, let us count in two ways the sum of the squares of the degrees of
the vertices in a hypergraph.. The first way is just the definition, i.e.,

∑
x∈X

d(x)2.

The second way is to count, for each set in the family A ∈ F , the degree of its vertices d(x), x ∈ A, i.e.,∑
A∈F

∑
x∈A

d(x). Since the degree of a vertex is just the number of subsets of the family to which it belongs, we

will be counting the degree of a vertex d(x) as many times as x ∈ A for A ∈ F , which is just by definition
d(x). Hence, the second count is

∑
x∈X

d(x)d(x) =
∑
A∈F

∑
x∈A

d(x) =
∑
x∈X

d(x)2 by the double counting principle.

Q.E.D.

(1.2) Let k ≤ n ∈ N and let P (n, k) be the product of k consecutive numbers starting in n.
We can write P (n, k) = n · (n− 1) · · · (n− k + 1). But then,

n · (n− 1) · · · (n− k + 1) = n · (n− 1) · · · (n− k + 1) (n−k)·(n−k−1)···1
(n−k)·(n−k−1)···1 Mult. & div. by the same number.

=
n!

(n− k)!

k!

k!
Multiplying & dividing by k!

=

(
n

k

)
k! By def. of binomial coefficient

Hence, P (n, k) =
(
n
k

)
k!. Since we know that

(
n
k

)
is a natural number for any k ≤ n ∈ N, then we conclude

that k!|P (n, k), and in fact P (n,k)
k! =

(
n
k

)
. Note that you should pick n to be the biggest number where you

want your product to end, and k the number of consecutive numbers you wish to include in the product. For
instance, if you want the product 5 · 4 · 3 · 2, you should pick P (n = 5, k = 4).

(1.5) Prove that
n∑

k=1

k
(
n
k

)
= n2n−1.

Proof: To prove this identity we can count in two ways the set P = {(x,M) : x ∈M ⊆ {1, ..., n}}.

First count: We can partition the set P by considering pairs in which |M | = 1, 2, ..., n. Note that since there is
nothing in the empty set, we do not need to count the pairs where |M | = 0.
How many pairs are there such that |M | = 1? By definition, there are

(
n
1

)
1-element subsets of

{1, 2, ..., n}. By the product rule there are 1 ·
(
n
1

)
many pairs.

How many pairs are there such that |M | = 2? By definition, there are
(
n
2

)
2-element subsets of

{1, 2, ..., n}. By the product rule there are 2 ·
(
n
2

)
many pairs.

In general, how many pairs are there such that |M | = i, for 1 ≤ i ≤ n?. By definition, there are
(
n
i

)
i-element subsets of {1, 2, ..., n}. By the product rule there are i ·

(
n
i

)
many pairs.

We want all possible pairs so we need to take the sum, i.e.,

|P | =
n∑

k=1

k

(
n

k

)

Second count: Let P ′ = {(x,M) : x ∈ {1, ..., n} ∧M ⊆ {1, ..., n}}, i.e., the set of pairs with no restrictions.
Since any element is either a member of M ⊆ {1, 2, ..., n} or not, we know that |P ′| = 2|P |. To count the
cardinality of |P ′|, just use the product rule to count the number of elements n followed by the number
of possible subsets of {1, 2, ..., n} which we know to be 2n. Therefore, |P ′| = n · 2n ⇒ |P | = n·2n

2 , i.e.,

|P | = n · 2n−1

By the double counting principle, the first and second count must agree. Hence,
n∑

k=1

k
(
n
k

)
= n · 2n−1

(1.9) To prove the Cauchy-Vandermonde identity we can apply the double counting principle. We will count the
number of k-element subsets a set with p + q elements.

First count: By definition, we know that a set of p + q elements has
(
p+q
k

)
number of k-element subsets.
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Second count: Partition the set of p + q into sets of p and q elements respectively. To count the number of k-element
subsets of a set with p + q elements, we can first count the number of i-element subsets of the set with
p elements, where 0 ≤ i ≤ k. By definition there are these many choices

(
p
i

)
for each i. Now we need

to select elements of the set with q elements. To complete a subset of k elements, we need to select
k − i elements of the q set. There are this many choices

(
q

k−i
)
. Finally, by the product rule, we can

form subsets of k-elements out of the initial p + q set by taking the product
(
p
i

)(
q

k−i
)
. So, for each i,

this product is the number of i-elements subsets of a set with p + q elements. Hence, to count the total

number we just take the sum:
k∑

i=0

(
p
i

)(
q

k−i
)
.

By the double counting principle, the first and second count must agree. Hence,

(
p + q

k

)
=

k∑
i=0

(
p

i

)(
q

k − i

)
(1.10) (

2n

n

)
=

(
n + n

n

)
Since 2n = n + n

=
n∑

k=0

(
n

k

)(
n

n− k

)
By Cauchy-Vandermonde identity

=
n∑

k=0

(
n

k

)(
n

n− (n− k)

)
Since

(
n

k

)
=

(
n

n− k

)

=
n∑

k=0

(
n

k

)(
n

k

)
Algebraic manipulation, taking product

=
n∑

k=0

(
n

k

)2

Which shows the result. Q.E.D.

(1.12) Two different proofs:

Algebraic: (
n

k

)(
k

l

)
=

n!

(n− k)!k!

k!

(k − l)!l!
Pascal definition of binomial coefficient

=
n!

(n− k)!

1

(k − l)!l!

(n− l)!

(n− l)!
Canceling k! and mult. and div. by (n− l)!

=
n!

(n− l)!l!

(n− l)!

(n− k)!(k − l)!
Rearranging denominator

=
n!

(n− l)!l!

(n− l)!

(n− l − k + l)!(k − l)!
Adding and subtracting l in 1st factor of 2nd denominator

=

(
n

l

)(
n− l

k − l

)
Pascal definition of binomial coefficient

Double Counting: Count in two ways the number of pairs (L,K) of subsets of {1, ..., n} such that L ⊆ K, |L| = l, |K| = k.

First count: By definition there are

(
n

k

)
many possible k-elements subsets of the set {1, 2, ..., n}. Also, by

definition, there are

(
k

l

)
many possible l-elements subsets of the set {1, 2, ..., k}. By the product

rule, there are

(
n

k

)(
l

l

)
pairs (L,K) with the given conditions.

Second count: By definition there are

(
n

l

)
many possible l-elements subsets of the set {1, 2, ..., n}. We have already

selected l elements we wish to include as the first member of the pair, therefore, we need to subtract
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l from n and choose (k − l)-elements subsets to complete the pair, i.e.,

(
n− l

k − l

)
. Finally, by the

product rule, there are

(
n

k

)(
n− l

k − l

)
pairs (L,K) with the given conditions.

From the Double counting principle it follows that the first and second count must agree, hence,(
n

k

)(
k

l

)
=

(
n

l

)(
n− l

k − l

)
(1.14) Let p be a prime number.

(i) Let 1 ≤ k < p. By definition:
(
p
k

)
= p!

(p−k)!k! = p(p−1)···(p−k+1)
k! ⇒

(
p
k

)
k! = p(p− 1) · · · (p− k + 1).

Let (p− 1) · · · (p− k + 1) = r. Then we can write more compactly:
(
p
k

)
k! = p · r where r ∈ N.

In particular, this means that p|
(
p
k

)
k!. Since p is a prime, by Euclid’s Lemma we have that p|

(
p
k

)
or p|k!

Claim: it is not possible that p|k!. Proof: By definition k! = k(k − 1) · · · 1. Since p is a prime, by
Euclid’s lemma it would have to divide some i for 1 ≤ i ≤ k. But this is impossible! Suppose that
indeed there exists i such that p|i for 0 < i < p. Then i = p · q, for some q ∈ N. Then i > p, a
contradiction. Hence, p does not divide k!.

Since p does not divide k! then it must be the case that p|
(
p
k

)
⇐⇒

(
p
k

)
≡ 0 (mod p). Q.E.D.

(ii) Let 1 ≤ k ≤ n < p. By definition:
(
n
k

)
= n!

(n−k)!k! = n(n−1)···(n−k+1)
k! ⇒

(
n
k

)
k! = n(n− 1) · · · (n− k + 1).

Divide both sides of the last identity by p:(
n
k

)
k!

p
=

n(n− 1) · · · (n− k + 1)

p

To assert that p|
(
n
k

)
k! is equivalent to assert that p|n(n − 1) · · · (n − k + 1). By Euclid’s lemma,

if p|n(n − 1) · · · (n − k + 1) then p|(n − i) for some 0 ≤ i ≤ k + 1. But it is not the case that
p|(n − i) since p > n − i for 0 ≤ i ≤ k + 1, since by hypothesis k is at least 1 and n < p. Therefore
p - n(n− 1) · · · (n− k + 1) ⇐⇒ p -

(
n
k

)
k!. Finally, since the converse of Euclid’s lemma is also true, we

can conclude that p - k! and p -
(
n
k

)
⇐⇒

(
n
k

)
6≡ 0(mod p)

(1.15) Proof by induction. Let S(n) be the following statement: np ≡ p (mod p), where p is a prime number.
We want to show that S(n) is true for all n ∈ N.

Base case: S(1) : 1p = 1 ≡ 1 (mod p), so base case holds true.

Inductive Step: Suppose that S(n) is true. We want to show that S(n+ 1) is true, i.e., we want to prove that

(n + 1)p
?
= n + 1 (mod p).

We begin by considering:

(n + 1)p =
p∑

k=0

(
p

k

)
np−k1k By binomial Theorem

= np +
p−1∑
k=1

(
p

k

)
np−k1k + 1 Factoring out the first and last element of the sum

≡ np + 0 + 1 (mod p) By previous exercise (1.15(i)) since 1 ≤ k < p

= np + 1 Working the sum

≡ n + 1 (mod p) By Inductive Hypothesis. Q.E.D
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