MAT 307: Combinatorics
Lecture 12: Extremal results on finite sets

Instructor: Jacob Fox

1 Largest antichains

Suppose we are given a family F of subsets of [n]. We call F an antichain, if there are no two sets
A, B € F such that A C B. For example, 7 = {S C [n] : |S| = k} is an antichain of size (}). How
large can an antichain be? The choice of k = |n/2] gives an antichain of size (LT:/IQ J)' In 1928,
Emanuel Sperner proved that this is the largest possible antichain that we can have. In fact, we
prove a slightly stronger statement.

Theorem 1 (Sperner’s theorem). For any antichain F C o],
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Since (§) < (|,1jo)) for any A C [n], we conclude that |F| < (,/7,))-

Proof. We present a very short proof due to Lubell. Consider a random permutation 7 : [n] — [n].
We compute the probability of the event that a prefix of this permutation {7y, ..., 7} is in F for
some k. Note that this can happen only for one value of k, since otherwise F would not be an
antichain.

For each particular set A € F, the probability that A = {71,...,m 4} is equal to k!(n — k)!/n!,
corresponding to all possible orderings of A and [n] \ A. By the property of an antichain, these
events for different sets A € F are disjoint, and hence
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The fact that any probability is at most 1 concludes the proof. O

This has the following application. We note that the theorem actually holds for arbitrary vectors
and any ball of radius 1, but we stick to the 1-dimensional case for simplicity.

Theorem 2. Let ay,ag,...,a, be real numbers of absolute value |a;| > 1.. Consider the 2" linear
combinations y ;| €a;, ¢ € {—1,+1}. Then the number of sums which are in any interval (x —
1,z +1) is at most (LN%J)'

An interpretation of this theorem is that for any random walk on the real line, where the i-th
step is either 4+a; or —a; at random, the probability that after n steps we end up in some fixed
interval (x — 1,z + 1) is at most (Ln%J)/zn = 0(1/y/n).



Proof. We can assume that a; > 1. For e € {—1,4+1}", let I={i € [n]: ¢ =+1}. I C I’ and ¢

corresponds to I’, we have
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Therefore, if I is a proper subset of I’ then only one of them can correspond to a sum inside

(x — 1,2+ 1). Consequently, the sums inside (z — 1,z + 1) correspond to an antichain and we can
have at most (L /2 J) such sums. O

Theorem 3 (Bollobds, 1965). If Ay,..., Ay and By,..., By, are two sequences of sets such that
A;NB; =0 if and only if i = j, then
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Note that if A;,..., A, is an antichain on [n] and we set B; = [n] \ A;, we get a system of sets
satisfying the conditions above. Therefore this is a generalization of Sperner’s theorem.

Proof. Suppose that A;, B; C [n] for some n. Again, we consider a random permutation 7 : [n] —
[n]. Here we look at the event that there is some pair (A;, B;) such that 7(4;) < w(B;), in the
sense that 7(a) < w(b) for all a € A;,b € B;. For each particular pair (A;, B;), the probability of
this event is |A;|!|B;|!/(|Ai| + | Bi|)!.

On the other hand, suppose that m(A4;) < 7(B;) and m(A;) < m(B;). Hence, there are points
x;, xj such that the two pairs are separated by x; and x;, respectively. Depending on the relative
order of z;, z;, we get either A; N B; = () or A; N B; = (), which contradicts our assumptions.
Therefore, the events for different pairs (A;, B;) are disjoint. We conclude that
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This theorem has an application in the following setting. For a collection of sets F C 2%, we call
T C X a transversal of F, if VA € F; ANT # (). One question is, what is the smallest transversal
for a given collection of sets F. We denote the size of the smallest transversal by 7(F).

A set system F is called 7-critical, if removing any member of F decreases 7(F). An example
of a 7-critical system is the collection F = ([kzﬂ) of all subsets of size k out of k + £ elements.
The smallest transversal has size £ + 1, because any set of size £ 4+ 1 intersects every member of
F, whereas no set of size £ is a transversal, since its complement is a member of F. Moreover,
removing any set A € F decreases 7(F) to £, because then A is a transversal of F \ {A}. This is
an example of a 7-critical system of size (k;gg), where 7(F) = ¢+ 1 and VA € F; |A| = k.

Observe that if F = {Ay, A, ..., Ap} is 7-critical and 7(F) = £+ 1, then there is a transversal
Bi,|B;| = ¢ for each 4, which intersects each A;, j # i. However, B; does not intersect A;, otherwise
it would also be a transversal of F. Therefore, Theorem 3 implies the following.

Theorem 4. Suppose F is a T-critical system, where 7(F) = ¢+ 1 and each A € F has size k.
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2 Intersecting families

Here we consider a different type of family of subsets. We call F C 2" intersecting, if AN B # 0
for any A, B € F. The question what is the largest such family is quite easy: For any set A, we
can take only one of A and [n]\ A. Conversely, we can take exactly one set from each pair like this
- for example all the sets containing element 1. Hence, the largest intersecting family of subsets of
[n] has size exactly 2" 1.

A more interesting question is, how large can be an intersecting family of sets of size k7 We
assume k < n/2, otherwise we can take all k-sets.

Theorem 5 (Erdés-Ko-Rado). For any k < n/2, the largest size of an intersecting family of subsets
of [n] of size k is (Z:%)

Observe that an intersecting family of size (Z’j) can be constructed by taking all k-sets con-
taining element 1. To prove the upper bound, we use an elegant argument of Katona. First, we
prove the following lemma.

Lemma 1. Consider a circle divided into n intervals by n points. Let k < n/2. Suppose we have
“arcs” A1,...,As, each A; containing k successive intervals around the circle, and each pair of arcs
overlapping in at least one interval. Then t < k.

Proof. No point z can be the endpoint of two arcs - then they are either the same arc, or two arcs
starting from x in opposite directions, but then they do not share any interval.

Now fix an arc A;. Every other arc must intersect Ap, hence it must start at one of the k — 1
points inside A;. Each such endpoint can have at most one arc. O

Now we proceed with the proof of Erdés-Ko-Rado theorem.

Proof. Let F be an intersecting family of sets of size k. Consider a random permutation 7 : [n] —
[n]. We consider each set A € F mapped onto the circle as above, by associating 7(A) with the
respective set of intervals on the circle. Let X be the number of sets A € F which are mapped onto
contiguous arcs 7(A) on the circle. For each set A € F, the probability that w(A) is a contiguous
arc is nk!(n — k)!/n! = n/(}). Therefore,

E[X] = Z Pr[m(A) is contiguous] = o
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On the other hand, we know by our lemma that m(A) can be contiguous for at most k sets at the
same time, because F is an intersecting family. Therefore,

E[X] < k.
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From these two bounds, we obtain



