Database: Data - Info - Knowledge. Data model: a collection of concepts for describing data. Schema: a description of a particular
collection of data using a given a data model. Database: the data as stored and managed by the DBMS. DBMS: software package that adds
functionality (MYSQL). Database System: hardware/software to support DBMS.

Relational Models: relations; attributes; tuples; domain: 1) data type 2) value range; cardinality: # of tuples; degree: number of
attributes. Relational Schema: table consists of a set of attr. Table consist of a set of tuples, DB consists of a set of tables. Relational
data instance: ordering does not matter. NULL values.

Integrity constrains: constrains defined on DB schema to regulate what is consider valid instance in the DB, e.g., domain constrains.

Key Constrains: super key (1) set of attributes (2) uniquely identify each tuple; candidate key: (1),(2),(3) minimum; primary key: one of
the candidate key. Entity Integrity: (1) each table must have a primary key. (2) no tuple can have NULL value on key. (3) no to tuples
have same value on primary key. Foreign Kkey: attribute(s) in one table that refers to PK in another table. Enforcing Integrity
Constrain: cascading/non-cascading.

SQL: DDL (Create, alter, Drop) table; DML (Insert, Delete, Update). Other Data Models: XML (semi-structured), RDF (Graph model)

DB Application: transaction: is a sequence of database operations that are packed into a unit to which the DBMS offers certain quality
guarantees (ACID). Properties of a transaction: ACID, atomicity, consistency, isolation, durability. A: all or nothing (unit), C: check
before and after, I: concurrency control, each user does not feel the impact of others, D: log/recovery system. Programming with
transactions: start/commit (durability) /rollback(atomicity) (all of these need to happen linearly in one function).

ER model: entity: set of similar objects that can be described by common attributes. Attributes: may be composed, may be represented
as multi-valued (phone number). Kyes: real-key (SSN) artificial-key (student-id) (a key is real or artificial relative to the kind of system).
Relationship: rules of correspondence between set of entities. Constrains: regulate involvement of instances in an entity relationship.
(1) key constrains: at most one = (2) participation constrain at least one (full participation, bold line w/o arrows) (1) and (2) can be
combined to represent exactly one. Class hierarchy: super class, sub class (Person ISA Director, Actor, etc). Weak entity: its key is a
combination of its parent key and its own key, must have exact participation (bold line) in the relationship with its parent.

Functional Dependencies: R<U,F> A->B,AinUBin U, if vr1,r2 in R, r1(A) =r2(A) =>r1(B) =r2(B)

R<U,F> X->Y, X subset U Y subset U, if vr1,r2 in R, r1(X) = r2(X) => r1(Y) = r2(Y) . Trivial FD Y subset X, No Trivial FD Y not subset X,
complete nontrivial FD X intersect Y = empty, Full FD: does not exists X' contained in X: X’->Y. X is superkey if X->U. X is candidate
key if X->U is a Full FD, X is a full key if: X->U=>X=U

Properties of FD: Reflexivity if Y subset X then X->Y, Transitivity if X->Y and Y->Z then X->Z, Augmentation if X->Y then XZ->YZ where
XZ=X Union Z. Union rule: if X->Y,X->Z then X->YZ, Decomposition Rule: if X->YZ then X->Y,X->Z, pseudo-transitivity: if X->Y and WY-
>Z, then XW->Z, set accumulation: if X->YZ, Z->W then X->YZW.

Closure: Let F be a set of functional dependencies, the closure of F, F+, is the set of all FDs that are implied by F.

Equivalent and Cover: Given a schema R and two functional dependencies F and G, if F*=G* over R, F=G. F is a cover of G. (1) F cover G
& (2) every gin G is implied by F < (3) G in F+. F+=G+ <& F = G & F cover G and G cover F.

Minimum cover: Given functional dependencies G, F is a minimum cover of G if: (1)F+=G* (2)the right hand side of each FD in F is a single
attribute (3) F is minimal, that is, if we remove any attribute from an FD in F or remove any FD from F, then F* will no longer equal G*
Minimum Coverage Algorithm: F =Fc (1) X-> A (2) all X->A, As minimum (3) all X->A is required. (1) for every rule X-> Y where
Y=A1,A2,..,An, then X->A1, X->A2,...X->An (2) for every rule f=X->A, where X=B1,...,.Bn, consider f'=B1,....Bn-1->A. F’=(F-{f}) Union {f'}. If
there exist a rule in F such that B1...Bn-1-> Bn then replace X->A with B1...Bn-1->A (3) for each rule X->A make F’ = F-{X->A}, F=F, if A
in(X)+ then remove X->A.

Normal Forms: 1st NF: every attribute cannot be further divided. 2nd NF: all nonkey attribute should totally depend on PK. 3rd NF: for
any non-trivial FD, X->A, one of the following must be true (1) X is a super key (2) A is a primary attribute (part of a candidate key)
BCNF: (1) An attribute cannot be determined by an attribute that is not a key (2) all left hand side of all FD must contain key.
(Alternatively, for each A->B, A is a key). Note: If a set of attr. Is a key then (attr)* must be equal to all attributes in the relation.

BCNF Decomposition Algorithm:

Let R be the initial table with FDs F This is a simplified version. In words:
S={R} When we find a table R with BCNF violation X—Y we:
Until all relation schemes in S are in BCNF 1] Remove R from S
foreachRin S 2] Add a table that has the same attributes as R except for Y
for each FD X — Y that violates BCNF for R 3] Add a second table that contains the attributes in X and Y
S=(S-{RhH U (R-Y)U (X)Y)
Enduntil

Relational Decomposition: take R<U,F> and break it into R1<U1,F1> ... Rn<Un,Fn> so that: U1 union U2 union...union Un = U. A well-
behaved decomposition meets: (1) lossless (don't loss any info) (2) preserve FD (F1 union F2 union ... union Fn equivalent F.

Algorithm for well-behaved decomposition: input R<U,F> => R1,...,Rn (1) Fc (2) for every X->Y create a table (3) if no table contains any
candidate key then create a table that contains a PK.

Formal Query Languages: Relational Algebra, Relational Calculus.

RA: (1) Relation R (2) Selection o_cond(R), input R, parameter cond (col op value/col op col), output schema same as R, instance tuple
in R that satisfy condition. (3) Projection m_col1l,col2,....coln(R), input R, parameter col1,col2,...coln, output schema (col1,col2,...,coln),
instance tuples without repetition. (4) Set operation R U S, R N S, R-S, input R,S (with exactly the same schema) output schema same as
R or S. (5) Cross Product RxS input R,S, col(R) N col(S) = @, output col(R) U col(S). (6) 0 Join R bowtie 6 S (from implementation point
of view it is only one operator, from a logical point of view it can be defined from other operations) input R,S, parameter 06 -> col1 op col2,
coll in R, col2 in S, output schema col(R) U col(S), instance R bowtie ¢ S = 6_8 (RxS) (7) Natural Join R bowtie S = for each pair of
attribute in R and S R.a = S.a where attributes names are the same.

RC: Declarative formal query language; basic ingredients: variable, constants, comparison operators, logical operators, quantifiers,
formula. TRC: All variables represent tuples, constants: 1,2,”CS”, Comparison <> = ... logical operators AND, OR, NOT, quantifiers, forall,
exists. Example {t| t € Student} (get all students), {t| 3s € Student(s.name=t.name)} (equivalent to projection in RA) (t is called de free
variable not quantified)

SQL: Select (1) attr(s) (2) * (3) expression +,-*,/,... (4) aggregate function count() max() min() avg() sum() (5) distinct(attrl,attr2,...)
note: avg(age) # avg(distinct(age)); From T1,T,2,... e,g, Enrollment as E; WHERE a Boolean expression; Group By attr(s) Having
aggregate function (column_name) operator value. Whenever you have the group by clause, involve the attr(s) in Select.

SQL Union, Intersect, Except: (S F W) Union <All> (S F W). the default behavior in not to keep duplicates. Use keyword All to enforce
keep duplicates.

SQL Nested Queries: Where Clause (1) attr IN (S F W) must return a valid set and only one column and data type comparable (2) Exists
(S F W) boolean expression, return true if (S F W) is non-empty, false otherwise (3) attr = > <,...,, <ALL|ANY> (S F W)

EXAMPLES:

RA: Find the students who have never taken any course that’s not required by his department.
Students - (Students X Ttsid(Take - Tsid,cid,term,year,grade (Students > Take > RequiredCourse)))

Tsid(Student) — Tsid(Tsid,cid(Take) — Tsid,cid(Students x RequiredCourses))

RC: Find the names of all students who are not in Informatics or CS.

{t| 3s € Student(s.name=t.name A =(s.dept="CS’ V s.dept="Info’)}

Find the names of students who took B561 and got A

{t| 3s € Student(s.name=t.name A Fe € Enrollment(e.sid=s.sid A e.grade="A’ A e.cid="B561’))}

SQL: Find the youngest students
SELECT ID FROM Student WHERE age = (SELECT MIN(age) FROM Student);

Find the department(s) where there are more male students than female students:
SELECT distinct F.dept FROM (SELECT dept,count(*) as CantF From Students WHERE gender = “F” Group By dept) As F,
(SELECT dept,count(*) as CantM From Students WHERE gender ="M” Group By dept) As
WHERE M.dept = F.dept AND F.cantF<M.cantM
Find the students who took all courses taken by Andrew S. (Find the students who did not took any course taken by A.S.)
SELECT Name FROM Students As S WHERE S.name !=’AS’ AND NOT EXISTS
((SELECT cid FROM Students as A, Enrollment as E WHERE A.sid = E.sid and A.name = ‘AS’)
EXCEPT (SELECT cid FROM Enrollment as E WHERE S.sid = E.sid))
Find the students whose applied universities overlap with the universities applied by 0001
SELECT DISTINCT ID, name FROM Student, Application
WHERE ID=studentID and Univ in (
SELECT Univ
FROM Student, Application
WHERE ID = 0001 and ID=studentID);

Employee(Emp,Name)
| hild
empoyee ‘ E cnridren hasChildren(Emp REF. Employee, childName,childAge)

Emp # Name
Name age
Faculty_Belong(EmpID,Name,Phone,DeptName REF Dept, Start_date,Salar
Faculty Ensl> y_ g(EmpID p p y)
Phone Dept(DeptName,Location)
oy 2
DeptName

Location

