
B561 MIDTERM REVIEW
Mo Zhou

What will be tested?
• similar to the assignments, as well as the
exercise questions discussed in class

NOT included
• We will NOT test you on the following topics

• DB application design
•  Interface design
• Software engineering

What to take?
•  Information sheet
• Pen, pencil

Database design
• Conceptual

• ER model

• Logical
• Schema

• Physical
•  Tables, index

ER model
• Entity, attribute, relationship
• Binary vs n-nary relationship
• Key of entity and relationship

ER model
• Weak entity, class hierarchy
• Constraints: key, participation

Relational model
• Relation, attribute, degree, cardinality
•  Integrity constraints: domain, key, foreign key

Relational model
• ER à relational

• Naïve transformation
• Dealing with key constraint, participation constraints,

weak entity, class hierarchy

Example-key constraint
Create table Faculty_Belong(
EmpID int,
Name char(50),
Phone char(10),
DeptName char(50),
Start_data date,
Salary double,
Primary Key (EmpID)
Foreign Key (DeptName)
References Dept)

Create table Dept(
DeptName char(50),
Location char(500),
Primary Key (DeptName)
)

Example-weak entity

Create table Employee(
Emp int,
Name char(50),
Primary Key (Emp))

Create table hasChildren(
Emp int,
childName char(50),
childAge int,
Primary Key (Emp, Name)
Foreign Key (Emp) References Empoyee)

Functional dependency
•  Functional dependency

•  In a given table, an attribute Y is said to have a functional
dependency on a set of attributes X (written X → Y) if and only if
each X value is associated with precisely one Y value.

•  Trivial dependency
•  A->A, AB->A

•  Full dependency
•  AB->C but both A->C and B->C are not true

• Super key
• Candidate key

Functional dependency properties
•  Reflexivity

•  If Y is a subset of X, then X → Y
•  Augmentation

•  If X → Y, then XZ → YZ
•  Transitivity

•  If X → Y and Y → Z, then X → Z
•  Union

•  If X → Y and X → Z, then X → YZ
•  Decomposition

•  If X → YZ, then X → Y and X → Z
•  Pseudotransitivity

•  If X → Y and WY → Z, then WX → Z
•  Set accumulation rule

•  If X → YZ and Z → AB, then X → ZAB

Closure, Equivalent, Cover
• Closure

•  Let F be a set of functional dependencies, the closer of
F, F+, is the set of all FDs that are implied by F.=

• Equivalent and Cover
• Given a schema R and two functional dependencies F

and G, if F+=G+ over R, F≡G. F is a cover of G
• Minimum cover

• Given functional dependencies G, F is a minimum cover
of G if
•  F+=G+

•  the right hand side of each FD in F is a single attribute
•  F is minimal, that is, if we remove any attribute from an FD in F

or remove any FD from F, then F+ will no longer equal G+

Normal forms
•  1NF

•  No multi-value attributes, nested relation

•  2NF
•  A relation schema R is in second normal form (2NF) if every non-

prime attribute A in R is fully functionally dependent on the primary
key

•  3NF
•  R is in 2NF. Every non-prime attribute of R is non-transitively

dependent (i.e. directly dependent) on every candidate key of R

• BCNF
•  R is in 3NF. Every nontrivial dependencies X → Y, X is a superkey.

BCNF decomposition
•  Let R be the initial table with FDs F
• S={R}
• Until all relation schemes in S are in BCNF

for each R in S
 for each FD X → Y that violates BCNF for R

•  S = (S – {R}) ∪ (R-Y) ∪ (X,Y)
•  enduntil

•  This is a simplified version. In words:
• When we find a table R with BCNF violation X→Y we:

•  1] Remove R from S
•  2] Add a table that has the same attributes as R except for Y
•  3] Add a second table that contains the attributes in X and Y

Example
Let us consider the relation scheme R=(A,B,C,D,E) and the

FDs:
 {A} → {B,E}, {C} → {D}

Candidate key: AC
Step1
Pick {A} → {B,E}
(A,B,C,D,E) generates R1=(A,C,D) and R2=(A,B,E)

Step2
Pick {C} → {D}
{A, C, D} generates R1=(A,C) and R2=(C,D)

Final decomposition: R2=(A,B,E), R3=(A,C), R4=(C,D)

3NF decomposition
•  Let R be the initial table with FDs F
• Compute the minimum cover Fc of F
• S=∅
•  for each FD X→Y in the minimum cover Fc

 S=S∪(X,Y)
•  if no scheme contains a candidate key for R
•  Choose any candidate key CN
•  S=S ∪ table with attributes of CN

Example
• R=(A, C, B, O)
•  Functional dependencies (also the minimum cover):

 {B}→{A,O}
 {C, A}→{B}

• Candidate Keys: {C, A}
•  {B}→{O} violates 3NF
•  3NF tables – for each FD in the minimum cover create a

table
• R1= (B, A, O)
• R2= (C, A, B)

Queries
• Give a query, understand what it looks for
• Give data instance and query, compute the result
• Give schema and query requirement, write query using

the language mentioned above

SQL
• Nested queries
• Group by, Having
• Aggregation
• Set operations

• Attributes in both sets MUST be exactly the SAME

SQL
• Student (ID, name, address, age, GPA, SAT)
• Campus (location, enrollment, rank)
• Application (studentID, Univ, date, major, decision)

•  Find the youngest students
• SELECT ID
•  FROM Student
• WHERE age = (SELECT MIN(age) FROM Student);

SQL
• Student (ID, name, address, age, GPA, SAT)
• Campus (location, enrollment, rank)
• Application (studentID, Univ, date, major, decision)

•  Find the students whose applied universities overlap
with the universities applied by 0001

• SELECT DISTINCT ID, name
•  FROM Student, Application
• WHERE ID=studentID and Univ in (
•  SELECT Univ
•  FROM Student, Application
•  WHERE ID = 0001 and ID=studentID);

SQL
• Student (ID, name, address, age, GPA, SAT)
• Campus (location, enrollment, rank)
• Application (studentID, Univ, date, major, decision)

•  Find the university that has more than 200 applicants
whose GPAs are greater than 3.0.

• SELECT.Univ
•  FROM Student, Application
• WHERE ID=studentID and GPA > 3.0
• GROUP BY Univ
• HAVING Count(*)>200;

RA and RC
•  If you are not good at writing equations directly, I
suggest you write sql firstly.

• RA
• SELECT clauseè𝜋
• WHERE clause è𝜎,⋈
• EXCEPT è -
• UNION è ∪
•  INTERSECT è∩

RA and RC
• RC

•  SELECT/FROM Clause
•  {p|∃𝑠∈𝑅(𝑠.𝑎𝑡𝑡𝑟1=𝑝.𝑎𝑡𝑡𝑟1∧𝑠.𝑎𝑡𝑡𝑟2=𝑝.𝑎𝑡𝑡𝑟2)}
• R is the table where p is selected

• WHERE clause
•  s.attr1>value
•  Joins relations R and T

•  ∃𝑠∈𝑅,t∈𝑇(𝑠.𝑎𝑡𝑡𝑟1=𝑡.𝑎𝑡𝑡𝑟1)

RA and RC
•  Student (ID, name, address, age, GPA, SAT)
•  Campus (location, enrollment, rank)
•  Application (studentID, Univ, date, major, decision)

•  Find the ids and names of students with GPA higher than 3.7
•  SQL: SELECT id, name FROM Student WHERE GPA>3.7
•  RA: 𝝅↓𝒊𝒅, 𝒏𝒂𝒎𝒆 (𝝈↓𝑮𝑷𝑨>𝟑.𝟕 (𝑺𝒕𝒖𝒅𝒆𝒏𝒕))
•  RC: 𝑝∃𝑠∈𝑺𝒕𝒖𝒅𝒆𝒏𝒕(𝒔.𝑰𝑫=𝒑.𝑰𝑫∧𝒔.𝒏𝒂𝒎𝒆=𝒑.𝒏𝒂𝒎𝒆∧𝒔.𝑮𝑷𝑨>𝟑.𝟕) 

RA and RC
• Student (ID, name, address, age, GPA, SAT)
• Campus (location, enrollment, rank)
• Application (studentID, Univ, date, major, decision)

•  Find the name and GPA of the students whose GPA is
higher than 3.7.

• RA: 𝜋↓𝑛𝑎𝑚𝑒 (𝜎↓𝐺𝑃𝐴>3.7 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡))
• RC: 𝑝∃𝑠∈𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑠.𝑛𝑎𝑚𝑒=𝑝.𝑛𝑎𝑚𝑒∧𝑠.𝐺𝑃𝐴>3.7) 

RA and RC
•  Student (ID, name, address, age, GPA, SAT)
•  Campus (location, enrollment, rank)
•  Application (studentID, Univ, date, major, decision)

•  Find the names of the students who are younger than 20 and
applied to IU.

•  SQL: SELECT name FROM Student, Application WHERE ID=studentID
and age<20 and Univ=“IU”;

•  RA: 𝜋↓𝒏𝒂𝒎𝒆 (𝝈↓𝒂𝒈𝒆<𝟐𝟎 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡)⋈↓𝑰𝑫=𝒔𝒕𝒖𝒅𝒆𝒏𝒕𝑰𝑫 𝝈↓𝑼𝒏𝒊𝒗=𝑰𝑼 
(𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛))

•  RC:{𝑝|∃𝑠∈𝑆𝑡𝑢𝑑𝑒𝑛𝑡,𝑡∈𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
•  (𝒔.𝒏𝒂𝒎𝒆=𝒑.𝒏𝒂𝒎𝒆∧𝒔.𝒂𝒈𝒆<𝟐𝟎∧𝒔.𝑰𝑫=𝒕.𝒔𝒕𝒖𝒅𝒆𝒏𝒕𝑰𝑫∧𝒕.𝑼𝒏𝒊𝒗="𝑰𝑼")

RA and RC
•  Student (ID, name, address, age, GPA, SAT)
•  Campus (location, enrollment, rank)
•  Application (studentID, Univ, date, major, decision)

•  Find the names and addresses of all students with GPA higher than
3.7 who applied to CS major at campus with enrollment less than
15,000 and were rejected.

•  RA: 𝜋↓𝑛𝑎𝑚𝑒,𝑎𝑑𝑑𝑟𝑒𝑠𝑠 (𝜎↓𝐺𝑃𝐴>3.7 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡) ⋈↓𝐼𝐷=𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝐷 ((
𝜎↓𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡<15000 (𝐶𝑎𝑚𝑝𝑢𝑠))

•  ⋈↓𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛=𝑈𝑛𝑖𝑣  (𝜎↓𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛=𝑟𝑒𝑗𝑒𝑐𝑡 𝑎𝑛𝑑 𝑚𝑎𝑗𝑜𝑟="𝑐𝑠" (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛))))
•  RC
•  {𝑝|
∃𝑠∈𝑆𝑡𝑢𝑑𝑒𝑛𝑡,𝑐∈𝐶𝑎𝑚𝑝𝑢𝑠,𝑡∈𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑠.𝐼𝐷=𝑡.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝐷⋀𝑠.𝐺𝑃𝐴>3.7⋀𝑡.𝑚𝑎
𝑗𝑜𝑟="𝑐𝑠"⋀𝑡.𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛="𝑟𝑒𝑗𝑒𝑐𝑡"⋀𝑡.𝑈𝑛𝑖𝑣=𝑐.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⋀𝑐.𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡𝑡<15000⋀
𝑠.𝑛𝑎𝑚𝑒=𝑝.𝑛𝑎𝑚𝑒⋀𝑠.𝑎𝑑𝑑𝑟𝑒𝑠𝑠=𝑝.𝑎𝑑𝑑𝑟𝑒𝑠𝑠)}

