
B561 Final Exam

Fall 2001

This exam comprises 3 pages. Ensure you hand in answers to 9 questions. Point counts are
given for each question: ensure you take these into account when planning your time. Total
Points: 135.

Part I: Query Formulation (50 points)

Consider the following schemas:

ZONES(ZONEID NUMBER, TYPE CHAR(1))

ROADS(ROADID NUMBER, SRCZONE NUMBER,

ENDZONE NUMBER, DIST NUMBER)

ROADID is the primary key for relation ROADS and ZONEID is the primary key for relation
ZONES. As in assignments 4 and 5, ROADS indicates directed routes between zones in a
particular city. Note that the existence of a road from a zone z1 to a zone z2 says nothing
about the existence (or lack thereof) of a road from z2 to z1.

Given a zone, z, the immediate neighbors of z are all zones, z0, reachable from z via a
road in ROADS, i.e. fz0j9r; d:hr; z; z0; di 2 ROADSg.

You may wish to abbreviate ROADS by R and ZONES by Z in order to save writing.

1. Formulate the following queries in the Relational Algebra, using only the operators �,
�, �, [, � and ./ (natural join).

(a) (5 points) Find those zones having no roads leaving them.

(b) (10 points) Find pairs of zones hz; z0i who have the same set of immediate
neighbors.

(c) (5 points) Find zone types, t, such that all zones of that particular type have
the same set of intermediate neighbors.

2. Formulate the following queries in the domain relational calculus (DRC). Make sure
you conform to a consistent syntax.

(a) (5 points) Find those roads that link zones having the same type.

(b) (10 points) Find those zones, z, that have no zone of the same type among their
immediate neighbors, i.e. for all z0 that is an immediate neighbor of z, the type
of z0 is not the same as the type of z.

3. Formulate the following queries in SQL. Conform to either the SQL '92 or the Oracle
syntax (but not a mixture of both). You may use aggregate functions if you wish.

(a) (5 points) Find those zones that have exactly three zones of type `I' among their
immediate neighbors.

1

(b) (10 points) Find zone pairs hz; z0i such that the shortest road between z and z0

has a distance of greater than 50 units.

Part II: PL/SQL (25 points)

A two-element list is an ADT (Abstract Data Type) having an element distinguished as the
head and another distinguished as the tail. An n-element list is an ADT having an element
distinguished as the head and having an n� 1-element list as its tail. Note the inherrently
recursive structure of the list ADT. The following operations are useful for ADT list :

length(): returns the length of a list (i.e. the number of elements in it).

reverse(): reverses the order of elements in the list.

In your answers to the following questions, try to conform to the SQL '92 or the PL/SQL
syntax as much as possible. Minor syntax errors will not cause you to lose points, but do
not simply state your answers in pseudo-code.

3. (5 points) Suggest an appropriate relational data type (that can be manipulated easily
in PL/SQL) for ADT list. Assume that data elements will have the type NUMBER.
Give an appropriate SQL '92 CREATE statement for your list data type.

4. (5 points) Assume that a list A LIST exists in the database, created in accordance
with question 3 (above). Write a PL/SQL procedure length(), that returns the length
of A LIST.

5. (15 points) Assume that a list A LIST exists in the database, created in accordance
with question 3 (above). Write a PL/SQL procedure reverse(), that reverses A LIST.
Assume an appropriate list A REV LIST exists to contain the result.

Part III: Query Optimization (35 points)

6. Consider the following query.

SELECT Z.ZONEID

FROM ROADS R1, ROADS R2,

ZONES Z, ZONES Z1, ZONES Z2

WHERE R1.ROADID != R2.ROADID AND R1.SRCZONE = Z.ZONEID AND

R2.SRCZONE = Z.ZONEID AND R1.ENDZONE = Z1.ZONEID AND

R2.ENDZONE = Z2.ZONEID AND Z1.TYPE = `R' AND Z2.TYPE = `R'

(a) (5 points) Translate the query into an RA expression using the naieve method
developed in class. Give the query plan form (tree form) of this naieve RA query.

2

(b) (10 points) Optimize the query plan obtained in (a) (above) using the rule-based
optimization method developed in class. Ensure the join ordering you choose is
a left-deep ordering. If you feel you need any additional assumptions, state these
briey and clearly.

7. Given relation schemas R(A;B;C;D) and S(A;B;C;D), prove or disprove the follow-
ing statements.

(a) (10 points)
�
�A;B(R) \ �A;B(S)

�
[�A;B(R ./ S) =

�
�A;B(R) [�A;B(S)

�
\ �A;B(R ./ S):

(b) (10 points)
�A=B(R� S) = �A=B(R)� �A=B(S):

Part IV. Transaction Management, Concurrency Control, and Recovery (25
points)

Questions 8 and 9 concern the schedule, S, given in �gure 1. After step 10, all schedules
either abort or commit (and these are the only further actions that occur).

T1 T2 T3 T4
1 R(X)
2 R(Y)
3 R(Z)
4 R(X)
5 W(X)
6 W(X)
7 R(X)
8 W(X)
9 W(Z)
10 R(X)
...

Figure 1: Schedule S for questions 8 and 9.

8. (a) (5 points) Draw the (conict) serializability graph for S. Is S conict serializ-
able? Justify your answer.

(b) (5 points) Suppose each of the transactions T1 through T4 commit. In which
order would the transactions have to commit in order that S is recoverable?

(c) (5 points) Is there an order in which the transactions could commit that would
make S strict? Explain your answer.

3

9. (10 points) Suppose transaction T3 commits at step 11, and there is a crash directly
afterward. Describe in detail the actions an UNDO/REDO recovery manager would
take to restore consistency to the database. You may wish to display the contents
of the log at the point of the crash to assist with your explanation. In this case, you
should use appropriate constants (e.g. a; b; c; :::) to indicate the before and after images
of the variables X; Y; Z according to the log.

4

