CS B551: Elements of Artificial Intelligence

Enrique Areyan

Homework 4

Answers to Written Questions:

1)

	P(Flavor)
Lime	0.3
Lemon	0.3
Cherry	0.4

- a) Cherry.
- b) The fraction of each flavor approximates the true proportion as N increases.
- c) The error decreases by several orders of magnitude with an increase in N.

2)

	L	Li	С
1	0.0	0.0	1.0
2	0.0	1.0	0.0
3	1.0	0.0	0.0
4	0.0	0.33	0.67
5	0.0	0.67	0.33
6	0.33	0.0	0.67
7	0.67	0.0	0.33
8	0.33	0.67	0.0
9	0.67	0.33	0.0
10	0.33	0.33	0.33

Bin	
	-
Flavor	

	P(Bin)
	0.1
2	0.1
0	0.1

b) 'Grass',{} = {'nowet': 0.130000000000003, 'wet': 0.87}

c) 'Rain',{'Grass':'wet'} = {'nr': 0.6879310344827586, 'r': 0.31206896551724145}

d) Two random variables A and B are conditionally independent given C, if:

P(A,B|C) = P(A|C)P(B|C), hence P(A|B,C) = P(A|C). To know whether Rain and Sprinkler are independent of Grass, we would test P(G|R,S) to be equal to P(G|S). If this is true, then there are independent.

We know from the CPT at the network that P(G|R,S) = 0.95. However, $P(G|S) = \Sigma_r P(G,R|S) = \Sigma_r P(G|R,S)P(R|S) = P(G|R=T,S)P(R=T|S)+P(G|R=F,S)P(R=F|S) = 0.95 \times 0.3 + 0.9 \times 0.7 = 0.285 + 0.63 = 0.915$. Therefore, they are not independ.

b) Age \perp Race, Age \perp Gender, Race \perp Gender, Age \perp Population, Race \perp Population, Gender \perp Population, Population \perp Ideology.

c) It turns out that by setting approximately uniform, equal probabilities to the CPT on node Ideology and Vote, I obtain an accuracy of 111/10000 = 0.01 or roughly 1%. Probabilities on parent nodes remain fixed as can be seen on my code. Now, when I hand-tune probabilities only on the Vote node, I get an accuracy of 71,27%. When I add hand-tuned probabilities to the Ideology node, I get an accuracy of 69,67%. The greatest difficulties was to find probabilities on combination of data for which I have no idea, e.g., how will the distribution over ideology be on a male, of "other" race, on age scale 1? I have not a clue and must rely only on common stereotypes and my view of the world. Moreover, even common stereotypes do not fill out the whole spectrum, at which point I would just guess some numbers.

d) *ml_result* gives the maximum likelihood estimate which is basically the node with the highest probability among the nodes returned by *enumerate_ask*. In practice, to use the results of *enumerate_ask* one would have to decide among a set of options with different probabilities. To choose the node with the highest

probability is the same as using *ml_result*, so in this sense the two are related. Ml_result can be viewed as a strategy to pick one node from the set of possible nodes returned by *enumerate_ask*. However, there can be other strategies, e.g., a roulette-wheel selection where each node will be assigned a portion of the roulette according to each probability.

monte_carlo_estimate relies on multiple, random samples of the CPT and as such approximate *enumerate_ask* in the limit. However, the quality of the approximations depend on the number of samples, so in practice it may be take more calculations to get a set of useful values. Still, one we would have to decide which value to pick out of the set obtained by the estimate.

e) A trained net achieves an accuracy of 72,85%, a slighter better result than my first attempt at hand-tuned net (71,27%) and a more accurate result than my second attempt (69,67%).

Training a net is better than hand-tune it. If one has a sufficient large amount of data available to train a network, one would not have to guess probabilities of potentially enormous tables, a task to tedious and error prone for humans.