
B551 Homework 2

Assigned: Sept. 15, 2011
Due: Sept. 29, 2011

1 Directions

The problems below will ask you to implement three strategies for a game-
playing agent for the Gobblet Gobblers game demonstrated in class. You
will need to:

• Rename the players/oware/username.py file to your IU user ID.

• Program your strategies in the indicated functions in that file.

– A state evaluation function giving a minimax value for a game
state

– A minimax search procedure
– An alpha-beta search procedure
– A search procedure to be used in a game-playing tournament

pitting all students’ submissions against each other.

• Answer the written questions below.

See README.txt for a complete description of the game framework and
the role of the file you are modifying.

1.1 Submission

Upload your [userID].py file and any auxiliary files (additional Python mod-
ules or data files you may have used to implement your strategies) to On-
Course. Do not upload modified versions of any of the other provided Python
files (in fact, don’t modify them at all; when we grade the homework we will
use the canonical versions and your changes will not be reflected). Type or
write your answers to the written questions and hand them in, hard-copy,
by the end of class on the due date.

1



2 The Game

For this homework we are playing a two-player game called “Gobblet Gob-
blers”. It is a variant of tic-tac-toe (or noughts and crosses) with the addition
of sized pieces and the ability to move pieces that are already on the board.
Larger pieces can “swallow” and conceal smaller pieces, either the player’s
own or the opposing player’s. The smaller pieces remain on the board, un-
der the larger ones, and are revealed if the larger pieces are moved. When
computing the three-in-a-row objective, only the largest piece in a square is
considered.

The game’s complete rules are online and may be viewed at
http://www.blueorangegames.com/instructions.php.

As the game is capable of cycling (repeating states), we introduce a new
rule for our implementation: If a repeated state occurs, the game is declared
a draw between the two players. We also adopt the convention that the blue
player always moves first and the orange second.

3 Programming

3.1 Setup

1. Download the file hw2.zip from OnCourse. The file contains a direc-
tory structure, with base class definitions for a game-playing frame-
work in the files game.py, game controller.py, and game state.py. Game
definitions for tic-tac-toe and Gobblet Gobblers are in tictactoe.py and
gobblet.py. Some sample game players are defined in the files in the
players directory.

For more information about these files and their roles, see
README.txt and the files’ documentation. You are principally in-
terested in the username.py file in the players/gobblet subdirectory,
which defines an incomplete Gobblet Gobblers minimax player. You
will complete the definition of this player to allow it to play the game.

2. Rename players/gobblet/username.py so that the filename is your IU
user ID (your email address). For instance, Mark’s ID is mw54, so he
would rename the file to mw54.py in the same directory. This is the
file you will alter and upload to OnCourse.

3. You may run the program with this command from the Windows com-
mand line (assuming the Python executable is in your PATH):
python game.py gobblet gobblet simple gobblet simple

2



Or, on any UNIX/Mac system’s command line:
./game.py gobblet gobblet simple gobblet simple

The second and third arguments to the command specify the player
modules (Python files) to use for the game; the first specifies the game
definition we use. gobblet simple.py resides in the same directory as
your Gobblet agent and defines a not-very-smart Gobblet player: It
simply selects the first move from the list of successors generated from
the current game state. You can also use gobblet human as one or both
players to allow humans to play the game.

See README.txt and the Python files’ documentation for more in-
formation on running the program, or execute:
./game.py -h

3.2 Programming Problems

1. Evaluation function for the Gobblers game

The evaluation function, evaluate(), in your GobbletPlayer class is
incomplete. Given a game state, the function should return a numeric
value indicating how “favorable” a game state is to the MIN and MAX
agents. (A value greater than 0 indicates a state favorable to MAX; less
than 0, favorable to MIN; exactly 0, a neutral state with no advantage
for either player.)

Implement the evaluation function to return such a numeric value.

Notes:

• You may wish to consult the definition of the GobbletState class
(the type of object you’ll be evaluating) in gobblet.py.

• A popular evaluation system for tic-tac-toe boards is to compare
the number of three-in-a-row positions that have not been blocked
off by the opposing player (and are therefore “available” to the
player under consideration). This system is implemented in the
tictactoe adv.py player in the players/tictactoe directory, which
you can feel free to use as a reference.

• However, as pieces can be moved in this game and larger pieces
may contain smaller pieces belonging to the other player, the
Gobblet Gobblers game is more fluid than the above evaluation
suggests. It is strongly suggested to incorporate other features,
taking into account available and concealed pieces, in your eval-
uation.

3



2. Minimax procedure

The minimax function, minimax move(), in your GobbletPlayer class
is incomplete. Given a game state, the procedure should execute a
minimax search, use the evaluate() function as appropriate, and re-
turn a GobbletMove object representing the best move for the cur-
rent player. (The current player is arbitrary, according to how the
game is being played, and may be obtained with the provided state’s
get next player() function.

You do not need to write a successor function for this assignment –
one is already provided in the definition of the GobbletState class,
and you can obtain successors for any state object by calling its suc-
cessors() function. However, when executing the search, the player
may only execute a set number of expansions – i.e., you may only call
GobbletState.successors() a certain number of times per turn before
it will stop returning moves. (We use this rather than time to limit
players’ search depth in the tournament, as time is unreliable and de-
pends on the machine’s load among other factors.) You may obtain the
available number of expansions for your current move by calling the
provided state’s expansions count() function. Obviously, you should
stick to calling the provided successor function and not circumvent the
limitation on expansions by writing a separate one of your own.

In your minimax function, compute a horizon h and use it to limit the
depth of your search so that you don’t run out of expansions.

Notes:

• Again, feel free to consult the Tic-Tac-Toe example player. How-
ever, be careful about your math when computing the search
horizon – the Tic-Tac-Toe example may not be correct!

• Optionally, you may want to look into the mirror() and rota-
tions() functions in gobblet.py.

3. Alpha-beta procedure

The alpha-beta function, alpha beta move(), in your GobbletPlayer
class is incomplete. Given a game state, the procedure should execute
a minimax search with alpha-beta pruning and return a GobbletMove
object representing the best move for the current player.

This function should do all the same things as minimax move(), but
with alpha-beta pruning.

4



Notes:

• Again, you must compute a reasonable horizon h – but the hori-
zon may be different for alpha-beta than for a simple minimax
search.

4. Tournament procedure

The search function used during the multi-agent tournament, tourna-
ment move(), in your GobbletPlayer class is incomplete. Given a game
state, the procedure should execute some search routine and return a
GobbletMove object representing the best move for the current player.

This function may simply call the minimax or alpha-beta search rou-
tines; or you may enhance it with advanced techniques such as singular
extension, multiple extension, best-move databases, etc.

Extra credit will be awarded for the agent that wins the tournament by
winning the most games. We will also award extra credit for creative
implementations of the tournament search.

3.3 Written Questions

Answer the following written questions, typed or written, and hand them in
in hard-copy format.

1. Explain how you devised your state evaluation function, and why you
think it is a good measure of a state’s favorability to the players.

2. Given a default limit on the number of expansions, M , what is the
largest horizon value h such that your minimax routine is guaranteed
to expand a complete tree to that depth (i.e., all branches of the tree
would unquestionably go that deep before you ran out of expansions)?
Why?

3. Perform some experiments to see what is the largest horizon you can
set without encountering the default limit on expansions with your
alpha-beta search. (Hint: You may need to use some temporary print
statements for this part.) Report on your findings.

4. Play your alpha-beta player against your minimax player. What do
you observe?

5


