
B551 Homework 1

Assigned: Sep. 1, 2011
Due: Sep. 15, 2011

1 Directions

Please read all the instructions for the homework carefully; the assignment is not difficult,
but should be completed with attention to detail. You may wish to skim this document
for the general structure of the homework and then re-read it closely for important details.

In this homework, you will be asked to write two functions to complete a search routine
for a word puzzle.

• The first function focuses on an aspect of basic search (the creation of successor
states in the search tree), and you should be able to write it after the lectures on
basic search. (The assignment framework uses a type of heuristic search called A*
search, but you should not need to understand it to complete the first problem.)

• The second function focuses on heuristics and can be written after the heuristic-search
lecture.

You will have two weeks to complete the assignment, including a week after the
heuristic-search lecture, so you should have plenty of time to finish the homework by
the due date. (If you wish to try your hand at the second part of the assignment early, the
relevant sections of the book are listed on the course schedule.)

Section 2 of this document describes the word game we are playing. Section 3 describes
the programming framework and the functions you must implement.

1.1 Submission

Complete your programming work in the wordgame.py file and hand it in electronically
on OnCourse. (Do not alter the other Python files or submit other files.) Don’t forget to
complete the written assignment available on the class webpage!

1



2 The Game

For this homework, we are interested in a single-player word game that appears in many
magazines, newspapers, books of puzzles, and so on. The object of this game is to start
with one English word, for instance, “mare”, and end up with another English word, for
instance, “colt”. To move between these words you may change one letter at a time, but
every time you change a letter it must result in a real English word. For instance, to solve
the “mare” to “colt” puzzle, we would generate the following words:

• mare

• care

• core

• cole

• colt

We could not start this solution by changing, say, “mare” into “mave”, because “mave”
is not an English word.

3 Programming

3.1 Setup

1. Download the file hw1.zip from OnCourse. When you unzip this file you will have
three Python files and one text file containing a spelling dictionary, one word per line
(words.txt).

• fibheap.py defines a useful data structure for the search problem (a special kind
of heap for keeping the search fringe up-to-date). You don’t have to understand
this code to complete the assignment, but it may be of interest to you if you
like data structures and algorithms.

• astar fibheap.py defines a class that operates a generic A* search procedure –
that is, it is not designed for solving any particular problem, but just to search a
tree of A* states. You should read through the code and gain a reasonably good
grasp of how this works, once A* search is covered in class – in-depth knowledge
of this code is not required to complete the assignment, but seeing A* code in
action is useful to your understanding of the class material.

• wordgame.py is our primary interest. It defines an inherited A* search class that
operates on the word game described above. The file also contains some infras-
tructure to support the search and operate on user input from the command

2



line. However, two crucial functions of the A* class are missing and the search
will not run with the file as-is. You will (eventually) need to understand much
of the code in this file and fix the search by implementing the missing parts of
the search definition.

2. You may run the program with this command from the Windows command line
(assuming the Python executable is on your PATH):
python wordgame.py WORD1 WORD2

Or, on any UNIX/Mac system’s command line:
./wordgame.py WORD1 WORD2

However, the program will not run successfully until you complete the first program-
ming problem.

3. If you wish, you may generate documentation for these files by running the following
command:
pydoc -w fibheap astar fibheap wordgame

This will generate an HTML file for each Python source file, describing the corre-
sponding file’s functions and classes in overview.

3.2 Programming Problems

REMINDER: Submit only your modified wordgame.py file to OnCourse. Do not modify
or submit other Python files.

1. Successor function for the word game

The successor function (WordAStar.successors()) for the puzzle is currently unimple-
mented. Considering that you want all the legal English words which can be arrived
at by changing one letter in the current word, how would you define the successor
function for this search problem? You do not need to write down an answer for this
question, but consider it before you start coding.

Implement the successor function.

Notes:

• Your function should accept a WordState object, which just stores the current
word, as an argument, and return a list of WordState objects which are legal
successors to the argument.

• Remember that we are ignoring case (i.e., “Mare” is automatically changed to
“mare” when input).

• Notice that WordAStar ’s self.dictionary object is a set containing all the legal
words from the dictionary file words.txt which are of the same length as the start

3



and goal words. Python sets are hash-table based and can be used for quick
lookups to check membership. If you have a variable named spam and want to
find out if its value is contained in the set named breakfast, you write if spam
in breakfast. See the Python documentation on sets for more information.

• Also note the global ALPHABET variable, which is a list containing all the
lowercase letters of the alphabet and may be useful.

You will be graded on correctness rather than efficiency, but try to consider running
time. Penalties may be assessed for very inefficient solutions.

2. Heuristic function for the word game

Heuristic functions and heuristic search will be covered in class on Thursday, Septem-
ber 8.

Once you have implemented the successor function, the search will run and generate
solutions (try it!). However, it will have to search quite a bit of the tree to do
so – probably thousands of nodes. That is because the search is using a “null”
heuristic function that returns 0 for all states. This heuristic is admissible but not
very accurate. If you execute wordgame.py without arguments, it will describe a
command-line switch that allows you to use a custom heuristic; however, the custom
heuristic is currently unimplemented.

What do you think is a reasonable heuristic for a word’s distance from the goal
word? Remember that an admissible heuristic will never overestimate the distance
to the goal. A good way to do this is to relax some constraint on the problem.
What constraints does this problem have? Which of them is a good candidate for
relaxation? Again, you do not have to write answers to these questions, but you
should consider them before writing any code.

When you have designed a good heuristic function, implement it in the
WordAStar.heuristic custom() method. Try running your code by using the -r switch
to wordgame.py. A good heuristic should provide a noticeable decrease in the number
of nodes searched and not produce any error messages about decreasing nodes in the
fringe.

Notes:

• Your function should accept a WordState object and return a number that is
smaller when the word is closer to the goal.

• Note that the goal word for the search is stored in WordAStar ’s self.gw member.

4



4 Example Test Cases

Use these test cases to acquire experimental data. Use that data when answering the
written questions.

• sat to roc

• arc to lot

• word to pare

• hare to fray

• taupe to brown

• smith to felid

• campus to coffee

• sweets to pastry

5


