B501 Assignment 5 Enrique Areyan

Due Date: Friday, March 30, 2012 Due Time: 11:00pm

1. (10 points) Show that decidable languages are closed under union.

Solution: Let languages L_1 and L_2 be decidable. We need to show that $L_1 \cup L_2$ is also decidable, i.e., that a decider U can be built to decide $L_1 \cup L_2$. We assume that there is a decider U_1 for L_1 and a decider U_2 for L_2 . The proof is by construction. Here is the construction for U:

Machine U on input x:

- 1. Run U_1 on input x.
- 2. If U_1 accepts, *accept*.
- 3. If U_1 rejects x, then run machine U_2 on input x.
- 5. If U_2 accepts, *accept*; if U_2 rejects, *rejects*.

Machine U accepts only every input that is accepted by either U_1 or U_2 and thus $L(U) = L(U_1) \cup L(U_2) = L_1 \cup L_2$. Moreover, machine U always halts on any input making it a decider.

2. (10 points) Show that decidable languages are closed under intersection.

Solution: Let languages L_1 and L_2 be decidable. We need to show that $L_1 \cap L_2$ is also decidable, i.e., that a decider U can be built to decide $L_1 \cap L_2$. We assume there is a decider U_1 for L_1 and a decider U_2 for L_2 . The proof is by construction. Here is the construction for U:

Machine U on input x:

- 1. Run U_1 on input x.
- 2. If U_1 rejects, rejects.
- 3. If U_1 accepts x, then run machine U_2 on input x.
- 5. If U_2 accepts, *accept*; if U_2 rejects, *rejects*.

Machine U accepts only every input that is accepted by both U_1 and U_2 and thus $L(U) = L(U_1) \cap L(U_2) = L_1 \cap L_2$. Moreover, machine U always halts on any input making it a decider.

3. (10 points) Show that Turing-recognizable languages are closed under union.

Solution: Let languages L_1 and L_2 be Turing-recognizable. We need to show that $L_1 \cup L_2$ is also Turing-recognizable, i.e., that a TM U can be built to decide $L_1 \cup L_2$. We assume that there is a TM U_1 that recognizes

 L_1 and a TM U_2 that recognizes L_2 and try to build U as follows:

Machine U is similar to the Universal Turing Machine Ω , but we need to expand it to work on the description of both machines U_1 and U_2 in parallel. Therefore, machine U on input $\langle U_1, U_2, w \rangle$ does the following:

Machine U will have 6 tapes. The first 3 tapes will be used for machine U_1 (just as in Ω), and the last 3 for U_2 . In the very first tape there will be a description of machine U_1 ; the second tape keeps track of the current state of machine U_1 and the third tape has a copy of input w and keeps track of the configurations. The other three tapes contain this same information but for U_2 .

Machine U will use the descriptions of U_1 and U_2 to operate both machines simultaneously according to each description. Machine U will accept, reject or loop on the input if, operating according to the descriptions of U_1 and U_2 , it occurs at any point in time that the content of states' tapes (tape number 2 or 4), is as follow:

Tape 2	Tape 4	U
accept	accept	accept
accept	reject	accept
reject	accept	accept
reject	reject	reject
accept	loop	accept
reject	loop	loop
loop	accept	accept
loop	reject	loop
loop	loop	loop

In short, it suffices that one of the machines accepts the input for U to accept. Note that loop is not actually a state, only a short hand to express that the machine never stops. Because U accepts w whenever U_1 or U_2 accepts, it follows that $L(U) = L(U_1) \cup L(U_2) = L_1 \cup L_2$. Note that machine U may loop and thus is not a decider. Therefore, U is a TM that recognizes $L_1 \cup L_2$ and thus, Turing-recognizable languages are closed under union.

4. (10 points) Show that Turing-recognizable languages are closed under intersection.

Solution: The proof here is the same as the proof for the union above, but changing the table as follow:

Tape 2	Tape 4	U
accept	accept	accept
accept	reject	reject
reject	accept	reject
reject	reject	reject
accept	loop	loop
reject	loop	reject
loop	accept	loop
loop	reject	reject
loop	loop	loop

In short, the only way for U to accept input w is if both U_1 and U_2 to accept it. Note that loop is not actually a state, only a short hand to express that the machine never stops. Because U accepts w whenever U_1 and U_2 accepts, it follows that $L(U) = L(U_1) \cap L(U_2) = L_1 \cap L_2$. Note that machine U may loop and thus is not a decider. Therefore, U is a TM that recognizes $L_1 \cap L_2$ and thus, Turing-recognizable languages are closed under intersection.

5. (10 points) Define a language that is neither Turing-recognizable nor co-Turing-recognizable.

Solution:

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are Turing Machines and } L(M_1) = L(M_2) \}$

6. (10 points) Let A and B be two disjoint languages. Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \overline{C}$. Show that any two disjoint co-Turing-recognizable languages are separable by some decidable language.

Solution: Preliminaries: Let A and B be two co-turing recognizable languages. By definition, there exists turing machines that recognizes the complement of these languages, let us call these: TM $M_{\bar{A}}$ and $M_{\bar{B}}$. Note that $L(M_{\bar{A}}) = \bar{A}$ and $L(M_{\bar{B}}) = \bar{B}$. Also assume that $A \cap B = \emptyset \iff \bar{A} \cup \bar{B} = \Sigma^*$

Proof: The proof is by construction, i.e., I will construct a machine M, which is a decider and separates A and B. Such machine works as follow:

- M = "on input w:
- 1. Run both machines $M_{\bar{A}}$ and $M_{\bar{B}}$ in parallel on input w.
- 2. If $M_{\bar{B}}$ accepts w, accept.
- 3. If $M_{\bar{A}}$ accepts w, reject."

From the preliminaries we know that any string in Σ^* is either on \overline{A} or \overline{B} . Machine M uses recognizers for \overline{A} and \overline{B} and thus, will halt on

every input, i.e., it is a decider.

Moreover, because A and B are disjoints, any string in A is in \overline{B} , i.e., $A \subseteq \overline{B}$. Every string in \overline{B} is accepted by M, and thus, $A \subseteq L(M)$. Conversely, any string in B is in \overline{A} , i.e., $B \subseteq \overline{A}$, but every string in \overline{A} is rejected by M; thus, B is not in the language of M.

It follows that L(M) = C is a decider that separates A and B.