
B501 Notes on Reduction

March 2012

1 Undecidability of HALT

1.1 Informal proof (Sipser book Sec 5.1)

Let’s assume for the purposes of obtaining a contradiction that TM R decides HALT . We construct
TM S to decide ATM, with S operating as follows:

S = “On input 〈M, w〉, an encoding of a TM M and a string w:

1. Run TM R on input 〈M, w〉.

2. If R rejects, reject .

3. If R accepts, simulate M on w until it halts.

4. If M has accepted, accept ; if M has rejected, reject .”

1.2 Formal proof

Suppose we have DHALT, a decider for HALT, then we can construct DATM, a decider for ATM as
follows:

DATM (〈M, w〉) = if (DHALT(〈M, w〉))

then eval(〈M, w〉))

else reject

Notice how this definition corresponds to the above informal definition.
Here the notation “eval(〈M, w〉)” means “the outcome of simulating TM DHALT on input

〈M, w〉”. This is analogous to the Scheme code (eval ‘(M w)). The notation 〈M, w〉 means a
piece of quoted code, similar to the Scheme notation ‘(M w). It corresponds to a string on the tape
of a TM containing the description of a TM M and its input w.

The outcome of eval(〈M, w〉) may be accept , reject , but it also may loop. Since we first used
DHALT on 〈M, w〉 to determine whether M halts on w, we know that eval(〈M,w〉) will not loop,
so the “then” branch will always produce accept or reject .

Thus we have defined a decider for ATM, contradicting the fact that ATM is undecidable.

1.3 Informal proof with mapping reduction (Sipser book Sec 5.3)

We demonstrate a mapping reducibility from ATM to HALTTM as follows. To do so we must
present a computable function f that takes input of the form 〈M, w〉 and returns output of the
form 〈M ′, w ′〉, where

〈M, w〉 ∈ATM if and only if 〈M ′, w ′〉 ∈HALTTM.

The following machine F computes a reduction f .

F = “On input 〈M, w〉:

1. Construct the following machine M ′.
M ′ = “On input x:

1. Run M on x.

2. If M accepts, accept .

3. If M rejects, enter a loop.”

1



2. Output 〈M ′, w〉.”

1.4 Formal proof with mapping reduction

Suppose we have DHALT, a decider for HALT. We define the mapping reduction as:

f (〈M, w〉) = 〈M ′, w〉

where the TM M ′ is constructed as computing the function:

M ′(x) = if (eval(〈M, x〉))
then accept

else loop

This means exactly (but concisely) what the above informal description says:

Construct the following machine M ′.

“On input x:

1. Run M on x.

2. If M accepts, accept .

3. If M rejects, enter a loop.”

Notice although M ′ takes input named “x”, the actual input is w when it is simulated. This is
because when 〈M ′, w〉 is passed as input to a decider of HALT, it uses the w part as the actual

argument for M ′. This is like the difference between a formal parameter and the actual argument
in a function call when using a programming language such as Java or Python.

We can see the behavior of M , M ′ and DHALT in the following table:

M accepts w M ′ accepts w DHALT accepts 〈M ′, w〉

M rejects w M ′ loops DHALT rejects 〈M ′, w〉

M loops on w M ′ loops DHALT rejects 〈M ′, w〉

Table 1. Behavior table for M , M
′ and DHALT

Notice that DHALT accepts 〈M ′, w〉 when M accepts w, and reject otherwise. So if DHALT

exists, we can use the output of running it on 〈M ′,w〉 to decide ATM. That is to say, we can define
DATM as follows:

DATM(〈M, w〉) =DHALT(〈M ′, w〉)

which contradicts the fact that DATM cannot exist.

2 Undecidability of ETM

We reduce ATM to ETM. Suppose we have a decider DETM for ETM. We define the mapping
reduction as:

f (〈M, w〉) = 〈M1〉

where M1 is defined as

M1(x) = if (x= w)

then eval(〈M, x〉)

else reject

Notice that f maps 〈M, w〉, the input for ATM to 〈M1〉, the input for DETM. There is no w part
for the input of DETM because it determines property of a TM regarding all inputs .

2 Section 2



We can see that if DETM exists, then we can decide ATM by defining the decider for it as

DATM(〈M, w〉)= notDETM(〈M1〉).

This is because

• If DETM(〈M1〉) accepts, then M1 is empty, i.e., it will reject all inputs. Looking at the
definition of M1, we can see that its input is x, and it runs M on x only when x = w,
otherwise it rejects. That is, w is the only input M1 can possibly accept. In order for M1 to
reject all input x, eval(〈M, x〉) must reject, otherwise M1 may accept or loop. But notice
that we only execute eval(〈M, x〉) when x= w, so M must reject w.

• On the other hand, if DETM(〈M1〉) rejects, then M1 is not empty, i.e., it will accept some

inputs. But notice from the definition of M1 that w is the only input M1 can possibly accept.
In order for M1 to accept some input x, eval(〈M,w〉) must accept, otherwise M1 will reject
all inputs. That is to say, in order for M1 to accept some input x, M must accept w.

We can see the behavior of DETM and M satisfies the following table:

M rejects w DETM accepts 〈M1〉

M accepts w DETM rejects 〈M1〉

Table 2. Behavior table for M and DETM.

So we have successfully mapping reduced ATM to ETM.

3 Undecidability of EQTM

We reduce ETM to EQTM. We define the mapping reduction as:

f (〈M 〉) = 〈M, M1〉

where M1 is defined as

M1(x) = reject .

That is to say M1 rejects all input.
If DEQTM is a decider for EQTM, then we can define a decider of ETM as follows:

DETM(〈M 〉)= DEQTM(〈M, M1〉).

contracting the fact that DETM cannot exist.

4 EQTM is neither Turing-recoginizable nor co-Turing-recog-
nizable

4.1 EQTM is not Turing-recognizable

In order to prove that EQTM is not Turing-recognizable, we reduce ATM to EQTM. We define the
mapping reduction as

f(〈M, w〉) = 〈M1, M2〉.

where M1 and M2 are two TMs defined as:

M1(x) = reject

M2(x) = eval(〈M, w〉).

Notice that in the above definition of M2, the body eval(〈M, w〉) does not refer to the input x at
all! That is, it ignores the input x. The input is x, but the body is eval(〈M, w〉), which simulates
M on w (and not x!). So eval(〈M, w〉) solely decides the outcome disregarding what input M2

gets . M2 accepts all inputs if eval(〈M, w〉) accepts; M2 rejects all inputs if eval(〈M, w〉) rejects.

EQTM is neither Turing-recoginizable nor co-Turing-recognizable 3



So if decider for EQTM, DEQTM, exists, then

• If DEQTM accepts 〈M1, M2〉, then M1 is equivalent to M2, i.e., they accept and rejects the
same inputs. Because M1 rejects all inputs, M2 must also reject all inputs x. In order to
rejects all inputs x, eval(〈M, w〉) must reject. That is to say, M must reject w.

• If DEQTM rejects 〈M1,M2〉, then M1 is not equivalent to M2. Because M1 rejects all inputs,
M2 must accept some inputs. In order to allow M2 accept some inputs, eval(〈M, w〉) must
accept. That is to say, M must accept w.

Thus we have reduced ATM to EQTM.

4.2 EQTM is not co-Turing-recognizable

Similarly, in order to prove that EQTM is not co-Turing-recognizable, we reduce ATM to EQTM.
We define the mapping reduction as

f(〈M, w〉) = 〈M1, M2〉.

where M1 and M2 are two TMs defined as:

M1(x) = accept

M2(x) = eval(〈M, w〉).

If decider for EQTM, DEQTM, exists, then

• If DEQTM accepts 〈M1, M2〉, then M1 is equivalent to M2, i.e., they accept and rejects the
same inputs. Because M1 accepts all inputs, M2 must also accept all inputs. In order to
accept all inputs, eval(〈M, w〉) must accept. That is to say, M must accept w.

• If DEQTM rejects 〈M1,M2〉, then M1 is not equivalent to M2. Because M1 accept all inputs,
M2 must not accept all inputs. That is, M2 must rejects some input. In order to allow
M2 reject some inputs, eval(〈M,w〉) must rejct, otherwise if eval(〈M,w〉) accepts, M2 will
accept all inputs. So M must reject w.

Thus we have reduced ATM to EQTM.

4 Section 4


