B501 Notes on Reduction

March 2012

1 Undecidability of HALT

1.1 Informal proof (Sipser book Sec 5.1)

Let's assume for the purposes of obtaining a contradiction that TM R decides HALT. We construct TM S to decide A_{TM} , with S operating as follows:

- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on w until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

1.2 Formal proof

Suppose we have D_{HALT} , a decider for HALT, then we can construct D_{ATM} , a decider for A_{TM} as follows:

$$D_{\text{ATM}}(\langle M, w \rangle) = \text{if}(D_{\text{HALT}}(\langle M, w \rangle))$$

then eval($\langle M, w \rangle$))
else reject

Notice how this definition corresponds to the above informal definition.

Here the notation " $eval(\langle M, w \rangle)$ " means "the outcome of simulating TM D_{HALT} on input $\langle M, w \rangle$ ". This is analogous to the Scheme code (eval '(M w)). The notation $\langle M, w \rangle$ means a piece of *quoted code*, similar to the Scheme notation '(M w). It corresponds to a string on the tape of a TM containing the description of a TM M and its input w.

The outcome of $eval(\langle M, w \rangle)$ may be *accept*, *reject*, but it also may *loop*. Since we first used D_{HALT} on $\langle M, w \rangle$ to determine whether M halts on w, we know that $eval(\langle M, w \rangle)$ will not loop, so the "then" branch will always produce *accept* or *reject*.

Thus we have defined a decider for $A_{\rm TM}$, contradicting the fact that $A_{\rm TM}$ is undecidable.

1.3 Informal proof with mapping reduction (Sipser book Sec 5.3)

We demonstrate a mapping reducibility from $A_{\rm TM}$ to ${\rm HALT}_{\rm TM}$ as follows. To do so we must present a computable function f that takes input of the form $\langle M, w \rangle$ and returns output of the form $\langle M', w' \rangle$, where

 $\langle M, w \rangle \in A_{\text{TM}}$ if and only if $\langle M', w' \rangle \in \text{HALT}_{\text{TM}}$.

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

- 1. Construct the following machine M'.
 - M' = "On input x:
 - 1. Run M on x.
 - 2. If M accepts, *accept*.
 - 3. If M rejects, enter a loop."

2. Output $\langle M', w \rangle$."

1.4 Formal proof with mapping reduction

Suppose we have D_{HALT} , a decider for HALT. We define the mapping reduction as:

$$f(\langle M, w \rangle) = \langle M', w \rangle$$

where the TM M' is constructed as computing the function:

$$M'(x) = if(eval(\langle M, x \rangle))$$

then $accept$
else $loop$

This means exactly (but concisely) what the above informal description says:

Construct the following machine M'.

"On input x:

- 1. Run M on x.
- 2. If *M* accepts, *accept*.
- 3. If M rejects, enter a loop."

Notice although M' takes input named "x", the actual input is w when it is simulated. This is because when $\langle M', w \rangle$ is passed as input to a decider of HALT, it uses the w part as the *actual argument* for M'. This is like the difference between a formal parameter and the actual argument in a function call when using a programming language such as Java or Python.

We can see the behavior of M, M' and D_{HALT} in the following table:

M accepts w	M' accepts w	D_{HALT} accepts $\langle M', w \rangle$
M rejects w	M' loops	D_{HALT} rejects $\langle M', w \rangle$
M loops on w	M' loops	D_{HALT} rejects $\langle M', w \rangle$

Table 1. Behavior table for M, M' and D_{HALT}

Notice that D_{HALT} accepts $\langle M', w \rangle$ when M accepts w, and reject otherwise. So if D_{HALT} exists, we can use the output of running it on $\langle M', w \rangle$ to decide A_{TM} . That is to say, we can define D_{ATM} as follows:

 $D_{\text{ATM}}(\langle M, w \rangle) = D_{\text{HALT}}(\langle M', w \rangle)$

which contradicts the fact that D_{ATM} cannot exist.

2 Undecidability of $E_{\rm TM}$

We reduce A_{TM} to $\overline{E_{\text{TM}}}$. Suppose we have a decider D_{ETM} for E_{TM} . We define the mapping reduction as:

$$f(\langle M, w \rangle) = \langle M_1 \rangle$$

where M_1 is defined as

$$M_1(x) = \text{if} (x = w)$$

then eval($\langle M, x \rangle$)
else *reject*

Notice that f maps $\langle M, w \rangle$, the input for A_{TM} to $\langle M_1 \rangle$, the input for D_{ETM} . There is no w part for the input of D_{ETM} because it determines property of a TM regarding all inputs.

3

We can see that if D_{ETM} exists, then we can decide A_{TM} by defining the decider for it as

$$D_{\text{ATM}}(\langle M, w \rangle) = \text{not} D_{\text{ETM}}(\langle M_1 \rangle).$$

This is because

- If $D_{\text{ETM}}(\langle M_1 \rangle)$ accepts, then M_1 is empty, i.e., it will reject all inputs. Looking at the definition of M_1 , we can see that its input is x, and it runs M on x only when x = w, otherwise it rejects. That is, w is the only input M_1 can possibly accept. In order for M_1 to reject all input x, $\text{eval}(\langle M, x \rangle)$ must reject, otherwise M_1 may accept or loop. But notice that we only execute $\text{eval}(\langle M, x \rangle)$ when x = w, so M must reject w.
- On the other hand, if D_{ETM}(⟨M₁⟩) rejects, then M₁ is not empty, i.e., it will accept some inputs. But notice from the definition of M₁ that w is the only input M₁ can possibly accept. In order for M₁ to accept some input x, eval(⟨M,w⟩) must accept, otherwise M₁ will reject all inputs. That is to say, in order for M₁ to accept some input x, M must accept w.

We can see the behavior of D_{ETM} and M satisfies the following table:

M rejects w	$D_{\rm ETM}$ accepts $\langle M_1 \rangle$
M accepts w	$D_{\rm ETM}$ rejects $\langle M_1 \rangle$

Table 2. Behavior table for M and D_{ETM} .

So we have successfully mapping reduced $A_{\rm TM}$ to $\overline{E_{\rm TM}}$.

3 Undecidability of EQ_{TM}

We reduce $E_{\rm TM}$ to EQ_{TM}. We define the mapping reduction as:

$$f(\langle M \rangle) = \langle M, M_1 \rangle$$

where M_1 is defined as

$$M_1(x) = reject.$$

That is to say M_1 rejects all input.

If D_{EQTM} is a decider for EQ_{TM}, then we can define a decider of E_{TM} as follows:

 $D_{\mathrm{ETM}}(\langle M \rangle) = D_{\mathrm{EQTM}}(\langle M, M_1 \rangle).$

contracting the fact that D_{ETM} cannot exist.

4 EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable

4.1 EQ_{TM} is not Turing-recognizable

In order to prove that EQ_{TM} is not Turing-recognizable, we reduce A_{TM} to $\overline{EQ_{TM}}$. We define the mapping reduction as

$$f(\langle M, w \rangle) = \langle M_1, M_2 \rangle.$$

where M_1 and M_2 are two TMs defined as:

$$M_1(x) = reject$$

 $M_2(x) = eval(\langle M, w \rangle).$

Notice that in the above definition of M_2 , the body $eval(\langle M, w \rangle)$ does not refer to the input x at all! That is, it ignores the input x. The input is x, but the body is $eval(\langle M, w \rangle)$, which simulates M on w (and not x!). So $eval(\langle M, w \rangle)$ solely decides the outcome disregarding what input M_2 gets. M_2 accepts all inputs if $eval(\langle M, w \rangle)$ accepts; M_2 rejects all inputs if $eval(\langle M, w \rangle)$ rejects.

So if decider for EQ_{TM} , D_{EQTM} , exists, then

- If D_{EQTM} accepts $\langle M_1, M_2 \rangle$, then M_1 is equivalent to M_2 , i.e., they accept and rejects the same inputs. Because M_1 rejects all inputs, M_2 must also reject all inputs x. In order to rejects all inputs x, $\text{eval}(\langle M, w \rangle)$ must reject. That is to say, M must reject w.
- If D_{EQTM} rejects $\langle M_1, M_2 \rangle$, then M_1 is not equivalent to M_2 . Because M_1 rejects all inputs, M_2 must accept some inputs. In order to allow M_2 accept some inputs, $\text{eval}(\langle M, w \rangle)$ must accept. That is to say, M must accept w.

Thus we have reduced $A_{\rm TM}$ to $\overline{\rm EQ_{\rm TM}}$.

4.2 EQ_{TM} is not co-Turing-recognizable

Similarly, in order to prove that EQ_{TM} is not co-Turing-recognizable, we reduce A_{TM} to EQ_{TM} . We define the mapping reduction as

$$f(\langle M, w \rangle) = \langle M_1, M_2 \rangle.$$

where M_1 and M_2 are two TMs defined as:

$$M_1(x) = accept$$

 $M_2(x) = eval(\langle M, w \rangle).$

If decider for EQ_{TM}, D_{EQTM} , exists, then

- If D_{EQTM} accepts $\langle M_1, M_2 \rangle$, then M_1 is equivalent to M_2 , i.e., they accept and rejects the same inputs. Because M_1 accepts all inputs, M_2 must also accept all inputs. In order to accept all inputs, $\text{eval}(\langle M, w \rangle)$ must accept. That is to say, M must accept w.
- If D_{EQTM} rejects ⟨M₁, M₂⟩, then M₁ is not equivalent to M₂. Because M₁ accept all inputs, M₂ must not accept all inputs. That is, M₂ must rejects some input. In order to allow M₂ reject some inputs, eval(⟨M, w⟩) must rejct, otherwise if eval(⟨M, w⟩) accepts, M₂ will accept all inputs. So M must reject w.

Thus we have reduced $A_{\rm TM}$ to EQ_{TM}.