
Theory of Computation
Midterm Exam.

Fall’ 2002 (YEN)

Name: .................................................................

I.D.#: .................................................................

1. (30 pts) True or false (mark O for ’true’; X for ’false’). (Score=Max{0, Right-1
2
Wrong}.)

(1) X
..........

If L1 is regular and L2 ⊆ L1, then L2 is regular as well.

Solution: counterexample—
L1 = {a}∗ and L2 = {ap | p is prime}
L1 is regular and L2 ⊆ L1, but L2 is not regular

(2) X
..........

If L1 is regular and L2 is not regular, then L1 ∪ L2 is not regular.

Solution: counterexample—
L1 = {a}∗ and L2 = {ap | p is prime}
L1 is regular and L2 is not regular, but L1 ∪ L2 is regular

(3) O
..........

If L1 is regular and L1 ∪ L2 is not regular, then L2 is not regular.

Solution: we know that regular language is closed under union, i.e.,

L1 is regular ∧ L2 is regular =⇒ L1 ∪ L2 is regular

Now the right hand side of the proposition above is not true, so L1 or L2 is not
regular. With the fact that L1 is regular, L2 is not regular.

(4) X
..........

If L1 is regular and L2 is not regular, then L1 ∩ L2 is not regular.

Solution: counterexample—
L1 = φ and L2 = {ap | p is prime}
L1 ∩ L2 = φ is regular

(5) X
..........

If L1 and L1 − L2 are regular, then L2 must be regular.

Solution: counterexample—
L1 = φ and L2 = {ap | p is prime}
L1 − L2 = L1 ∩ L2 = φ ∩ L2 = φ is regular,
but L2 is not regular.

(6) X
..........

{aibi+jcj|i, j ≥ 0} is regular.

(7) X
..........

{(anb)n|n ≥ 1} is context free.

(8) X
..........

{(anb)m|m, n ≥ 1} is context free.
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(9) O
..........

{ambncpdq|m + n = p + q} is context free.

(10) O
..........

{wcwRcw|w ∈ {a, b}∗} (⊆ {a, b, c}∗) can be represented as the

intersection of two context free languages.
Solution: It can be represented as the intersection of the following two context-free
languages—

L1 = {ωcxcω|ω, x ∈ {a, b}∗}

L2 = {ωcωRcx|ω, x ∈ {a, b}∗}

(11) O
..........

We define L1/L2={x | ∃y ∈ L2, such that xy ∈ L1}.
If both L1 and L2 are regular, so is L1/L2.

(12) X
..........

If L1/L2 and L1 are context free, then L2 must be regular.

(13) X
..........

{ambn|m,n ≥ 1}/{bn|n ≥ 1}={am|m ≥ 1}.
Solution: It should be

{amb∗|m ≥ 1}

(14) X
..........

If L1 is regular and L2 is not regular, then L1L2

(the concatenation of L1 and L2) cannot be regular.

(15) O
..........

If L1 is context-free and L2 is regular, then L1 − L2 is context free.

Solution: See problem 2.(f)

(16) X
..........

If L1 is regular and L2 is context free, then L1 − L2 is context free.

Solution: See problem 2.(f)

(17) O
..........

If L is context free, then LR (={xR|x ∈ L}) is also context free.

Solution: we can always find a CFG to produce LR: by replacing the string on
right-hand-side of every production rule with its reverse, for example,
if L is produced by the grammar G:

A → 01B
B → 2#

then LR can be produced by GR:

A → B10
B → #2

which is made by replacing 01B on the RHS of first production rule of G with B10,
and replacing 2# with #2 in the second rule.

(18) O
..........

{xxxx|x ∈ {0, 1}∗} can be accepted by a nondeterministic linear bounded
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automaton (LBA).

(19) O
..........

Let L(⊆ Σ∗) be a regular language.

Then Enlarge(L)={x ∈ Σ∗ | for some y ∈ Σ∗, xy ∈ L} is also regular.

(20) O
..........

Every regular language can be accepted by some NFA with exactly 15 final states.

Solution: Every regular language can be accepted by some NFA, which might has
an arbitrary number of final states. We can turn it into an NFA with exactly one
final state, and then an NFA with exactly 15 final states:

(a) Introduce a new state into the NFA, and add λ transitions from every final
state to it.

(b) Replace the NFA’s set of final state with the set that consists of only the
newly introduced state. That is, the newly introduced state is now the only
one designated as the final state. The resulted NFA is equivalent to the original
one, but has exactly one final state.

(c) Introduce another 14 states into the NFA, and add λ transitions from the
only one final state to them. Then designate the 14 new states as the final
states as well. Now the NFA is equivalent ot the original one, but has exactly
15 final states.

(21) O
..........

For every n, Ln = {aibi | i ≤ n} is regular.

Solution: It’s regular because it’s finite.

(22) X
..........

Nondeterministic and deterministic versions of PDAs are equivalent.

Solution: Example 2.10 on p.105 of the textbook tells us that it’s not the case.

(23) X
..........

If a language L satisfies the conditions stated in the pumping lemma for CFLs,

then L is context free.
Solution: Pumping lemma is a necessary condition, but not a sufficient one!

(24) X
..........

Every infinite set of strings over a single letter alphabet Σ (={a})
contains an infinite context free subset.

(25) X
..........

L1 = L2 if and only if L∗
1 = L∗

2.

Solution: counterexample—
let L1 = {a, aa}, L2 = {ap|p is 1 or is prime}
L1 6= L2, but L∗

1 = L∗
2 = a∗

(26) O
..........

For any languages L1, L2 and L3, L1(L2 ∩ L3) ⊆ (L1L2) ∩ (L1L3)

Solution: see the next problem

(27) X
..........

For any languages L1, L2 and L3, (L1L2) ∩ (L1L3) ⊆ L1(L2 ∩ L3).

Solution: counterexample—
let L1 = {a, aa}, L2 = {ai|i is odd}, L3 = {ai|i is even};
(L1L2) ∩ (L1L3) = {a}, L1(L2 ∩ L3) = φ
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(28) O
..........

Every non-regular language is infinite.

Solution: because for every finite language, we can construct a finite state
automaton to accept it.

(29) X
..........

A context-free language is inherently ambiguous iff there exists

an ambiguous context-free grammar generating the language.
Solution: by definition, inherently ambiguous context-free languages are
languages that can only be generated by ambiguous grammars.

(30) X
..........

The intersection of two non-context-free languages cannot be context-free.

Solution: counterexample—
The intersection of the following two non-context-free languages

{aibici | i ≥ 0}

and
{aibjci | 1 < i < j < 2i}

is φ, which is context-free.
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2. (30 pts) Answer the following questions.

(a) (3 pts) Let FLIP (A) = {wwR | w ∈ A}. (wR denotes the reversal of w.) Is there a regular
language X such that FLIP (X) is not regular? Why?
Solution:
If X = {10i1 | i ≥ 0}, then FLIP (X) = {10i110i1 | ı ≥ 0}, which is not regular.

(b) (3 pts) Write down the set of strings expressed by the regular expression: (λ∪0∪10)(λ∪1).
(λ denotes the empty string, and 0 and 1 are two symbols.)
Solution: {λ, 0, 1, 01, 10, 101}

(c) (3 pts) Define configurations for finite automata and pushdown automata.
Solution:
for FSA: current state & rest of the input string
for PDA: current state & rest of the input string & current stack content

(d) (3 pts) Eliminate the λ rule in the following CFG (i.e., write down an equivalent one without
the λ rule).
S → AAA
A → a | b | λ
Solution:
S → aaa | aab | aba | abb | baa | bab | bba | bbb | aa | ab | ba | bb | a | b | λ
or
S → AAA | AA | A | λ
A → a | b

(e) (4 pts) List four operations under which the context-free languages are closed.
Solution: Union, concatenation, star, reverse

(f) (8 pts) Suppose L is context-free and R is regular.

(1) Is L−R context-free? Why?
Solution:
It is known that regular language is closed under complement and that CFL is
closed under intersection with regular languages.
L−R = L ∩R, so L−R is context-free

(2) Is R− L context-free? Why?
Solution:
It is known that CFL is NOT closed under complement and that CFL is closed
under intersection with regular languages.
R− L = R ∩ L, so R− L is not necessarily context-free

(g) (6 pts)

(1) State Myhill-Nerode theorem.
Solution:
A language L over alphabet Σ is non-regular ⇔ there is an infinite subset of Σ∗ such
that for each pair of string x and y in it, exactly one of xz and yz is in L for some
z ∈ Σ∗.
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(2) Instead of using the pumping lemma, use Myhill-Nerode theorem to show {ww | w ∈
Σ∗} to be non-regular.
Solution:
L = {ww | w ∈ Σ∗}.
A non-regularity proof by Myhill-Nerode requires finding an infinite set S of strings
and a string for each pair of strings of S.

Consider the set of string S = {ai | i ∈ N}. Let am and an be arbitrary
two different members of S, where m, n ∈ N and m 6= n. Select bamb as a string to
be appended to am and an, then ambamb is in L while anbamb is not. Since am and
an are an arbitrary pair of strings of S, S satisfies the conditions of Myhill-Nerode
theorem. Hence L is non-regular.

3. (10 pts) Let L = {aibjci | i ≤ j ≤ 2i}. Prove that L is NOT context-free.
Solution:
Assume that L is a CFL and obtain a contradiction.
Let p be the pumping length for L that is guaranteed to exist by the pumping
lemma. Select the string s = apbpcp. Clearly s is a member of L and of length at
least p.
Condition 3 says that |vxy| ≤ p, which implies the following five cases:

a. |vxy| lies entirely within ap (or cp): pumping s up or down will make the
number of a not eqaul to the number of c, and therefore not a member of L.
Condition 1 is violated and a contradiction occurs.

b. v (y) contains only characters of a (c), and y (v) contains characters of a
and b (b and c): pumping s up will make the string of the form axbyazbucv

(axbyczbucv), and therefore not a member of L. Condition 1 is violated and a
contradiction occurs.

c. v (y) contains only characters of a (c), and y (v) contains only characters of b:
pumping s up or down will make the number of a not eqaul to the number of c,
and therefore not a member of L. Condition 1 is violated and a contradiction
occurs.

d. v (y) contains characters of a and b (b and c), and y (v) contains only characters
of b: similar to case b..

e. |vxy| lies entirely within bp: pumping s up will make the number of b more
than two times the number of a, and therefore not a member of L. That
violates condition 1 of the lemma and is thus a contradiction.

4. (10 pts) Consider the infinite 2-dimensional grid G = {(m, n) | m and n are integers}. Every
point in G has 4 neighbors, North, South, East, and West. Starting at the origin (0, 0), a string
of commands N, S, E, W generates a path in G. For instance the string NESW generates a path
clockwise around a unit square touching the origin. Say that a path is closed if it starts at the
origin and ends at the origin. Let C be the set of all strings over Σ = {N, S,E, W} that generate
a closed path.

(a) Is C context-free? Give a convincing proof.
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Solution:
C is the set of strings in which #(N) = #(S) and #(E) = #(W )
Assume that C is a CFL and obtain a contradiction using the pumping lemma.
Let p be the pumping length for C that is guaranteed to exist by the pumping
lemma. Select the string s = NpEpSpW p. Clearly s is a member of C and of length
at least p.
By condition 3 of the pumping lemma (|vxy| ≤ p), it is easily seen that v and y can
only contain at most two kinds of commands next to each other (N and E, E and
S, or S and W), and pumping s will cause #(N) 6= #(S) or #(E) 6= #(W ), which
violates the condition 1 and a contradiction occurs.

(b) Describe in English two CFLs A and B, such that C = A ∩B.
Solution:
A is a CFL in which every string has an equal number of N and S.
B is a CFL in which every string has an equal number of E and W .

5. (10 pts)

(1) Let B={1ky | y ∈ {0, 1}∗, y contains at least k 1s, for k ≥ 1}. Show that B is regular.
Solution:
1ky = 11k−1y = 1z, where z = 1k−1y. ⇒ z contains at least (k− 1) + k = 2k− 1 1s,
where k ≥ 1.
And since k ≥ 1, (2k − 1) ≥ (2× 1− 1) = 1
B={1ky | y ∈ {0, 1}∗, y contains at least k 1s, for k ≥ 1}={1z | z ∈ {0, 1}∗, z
contains at least one 1}, which can be easily checked by a FSA.

(2) Let C={1ky | y ∈ {0, 1}∗, y contains at most k 1s, for k ≥ 1}. Show that C is NOT regular.
Solution:
Assume that C is regular and obtain a contradiction. Let p be the pumping length
for C that is guaranteed to exist by the pumping lemma. Select the string s = 1p01p.
Clearly s is a member of C and of length at least p.
Condition 3 of the pumping lemma says |xy| ≤ p, which implies that y lies entirely
within the front 1p. Pumping s down will make the 1s in y outnumber those in the
front 1p. A contradiction occurs.

6. (10 pts) You are given two DFAs M1 = (Q1, Σ, δ1, q1, F1) and M2 = (Q2, Σ, δ2, q2, F2). Suppose
you want to construct a DFA M = (Q, Σ, δ, q, F ) to accept L(M1) − L(M2) (i.e., the set of
strings that are in L(M1) but are not in L(M2)). Suppose you use the product construction, so
Q = Q1 ×Q2. Write down δ, q, and F precisely.
Solution:
δ((x, y), a) = (δ1(x, a), δ2(y, a)), where (x, y) ∈ (Q1 ×Q2), and a ∈ Σ
q = (q1, q2)
F = F1 × (Q2 − F2)

7. (10 pts) A Deterministic Counter Automaton (DCA) is a deterministic pushdown automaton
whose stack alphabet consists of just one symbol. Just like a PDA, at every transition a DCA
can push or pop a symbol from the stack, and can test for the stack being empty.

(a) Give a non-regular language accepted by a DCA.
Solution: L = {aibi | i ∈ N}
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(b) Is the language L = {w#wR | w ∈ {0, 1}∗} accepted by a DCA? Prove it. (Hint: How
many configurations are possible for a DCA when it reaches #?)
Solution:
There are 2|w| possibilities for a string of length |w|. And it implies that there must
be 2|w| different configurations for the machine to remember the string it reads so
far.
However, from the structure of DCA, we know that the DCA can only offer at most
|Q| × |w| different configurations (even if it changes states and pushes or pops the
stack every time it reads a character), where |Q| is the number of states the DCA
has, which is finite. 2|w| will outnumber |Q| × |w| when |w| grows long enough.
With pigeon hole principle, we know that it’s impossible for a DCA to accept L.
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