
CS 5104 course notes - 1 - March 22, 2006

The Halting Problem

ATM = { 〈M, w〉 | M is a TM and M accepts w }

U = “On input 〈M, w〉, where M is a TM and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.

[U recognizes ATM, but does not decide it, because if M loops forever, so does U]

[ATM is not decidable, but how do we prove it?]

Diagonalization

Definition

A set A is countable if it is finite or there is a one-to-one correspondence between all the
elements of A and N

[If there is a one-to-one correspondence between all the elements of any two sets, we say
they have the same cardinality (or size)]

[show that the even numbers are countable]

[show that the rational numbers are countable]

Theorem

R is uncountable

Proof

It’s sufficient to show that [0, 1] is uncountable.
Let f: N → [0, 1] be one-to-one and onto.

[one-to-one: f(47) and f(635) can’t map to the same real number]
[onto: every real is included in the mapping]

f(1) = 0.b1,1b1,2b1,3b1,4b1,5 …
f(2) = 0.b2,1b2,2b2,3b2,4b2,5 …
f(3) = 0.b3,1b3,2b3,3b3,4b3,5 …
f(4) = 0.b4,1b4,2b4,3b4,4b4,5 …
f(5) = 0.b5,1b5,2b5,3b5,4b5,5 …
…

where each bi,j is a binary digit (0 or 1)

CS 5104 course notes - 2 - March 22, 2006

We construct a real number a = 0.a1a2a3… that is not included in this mapping.

a1 ≠ b1,1 (if b1,1 is 0, a1 is 1; if b1,1 is 1, a1 is 0)
a2 ≠ b2,2
a3 ≠ b3,3
a4 ≠ b4,4
a5 ≠ b5,5
…

Suppose a is in the mapping.
Then f(n) = a for some n.
The n-th digit in f(n) is bn,n
The n-th digit in a is an
But by construction an ≠ bn,n

[why can’t we have 1 = .100000…, 2 = .010000…, 3 = .1100000…, …]

Theorem

ATM is undecidable (recall that ATM = { 〈M, w〉 | M is a TM and M accepts w })

Proof

Suppose ATM is decidable

Let H be a decider for ATM

 Then H =

!

accept if M accepts w

reject if M rejects or loops on w

"

$

 Construct D = “ On input 〈M〉 : [M is a TM]
1. Run H on input 〈M, 〈M〉〉 [ex: Pascal compiler written in Pascal]
2. Output the opposite of what H outputs

(if H accepts, reject; if H rejects, accept) ”
Running H on input 〈D, 〈D〉〉 yields a contradiction:
Case A: H accepts 〈D, 〈D〉〉 (meaning that D accepts 〈D〉)

 Therefore we reject (meaning D rejects 〈D〉)
 ⇒⇐

Case B: H rejects 〈D, 〈D〉〉 (meaning that D rejects 〈D〉)
 Therefore we accept (meaning D accepts 〈D〉)

 ⇒⇐
In both case, we get a contradiction, therefore ATM is not decidable.

[the book shows how this proof can be viewed as a diagonalization proof]

CS 5104 course notes - 3 - March 22, 2006

Definition A language is co-Turing-recognizable if its complement in Turing-
recognizable.

Theorem

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Proof

(⇒)
Assume A is decidable
 Then L is Turing-recognizable
 And L′ is decidable
 So L′ is Turing-recognizable
Therefore, A is decidable ⇒ A and A′ are both Turing-recognizable

(⇐)
Assume both A and A′ are Turing-recognizable

Let M1 be a TM that recognizes A
Let M2 be a TM that recognizes A′
Construct M = “ On input w:

1. Run both M1 and M2 on input w in parallel
2. If M1 accepts, accept; if M2 accepts, reject ”

w ∈ A ⇒ M1 halts & accepts ⇒ M halts & accepts
w ∉ A ⇒ M2 halts & rejects ⇒ M halts & rejects
Therefore, M decides A

Therefore, A & A′ are Turing-recognizable ⇒ A is decidable

Corollary

A′TM is not Turing-recognizable

Proof

If it were, ATM would be decidable (which is isn’t)

CS 5104 course notes - 4 - March 22, 2006

Reducibility

Theorem HALTTM = { 〈M, w〉 | TM M halts on input w } is undecidable

Proof
Suppose HALTTM is decidable
 Let R be a decider for HALTTM
 (*) Construct TM S that uses R to decide ATM
 ATM is undecidable ⇒⇐
HALTTM is undecidable

S = “ On input 〈M, w〉:

1. Run R on 〈M, w〉
2. If R rejects (M does not halt on w), reject
3. If R accepts (M halts on w), run M on w

4. If M accepts, accept
5. If M rejects, reject

Theorem ETM = { 〈M〉 | M is a TM and L(M) = ∅ } is undecidable

Proof
Suppose ETM is decidable
 Let R be a decider for ETM
 (*) Construct TM S that uses R to decide ATM
 ATM is undecidable ⇒⇐
ETM is undecidable

S = “ On input 〈M, w〉:

1. Construct M1 that rejects all strings that are not w, and accepts w only if M
accepts w.
(M1 = On x: if x ≠ w, reject else Run M on w; if M accepts, accept)
[M1 is not a decider]
[we are not running it, we are merely constructing it]

2. Run R on M1
3. R rejects M1 ⇒ L(M1) ≠ ∅ ⇒ M1 accepts w ⇒ M accept w; accept 〈M, w〉
4. R accepts M1 ⇒ L(M1) = ∅ ⇒ M1 does not accepts w ⇒ M does not accept w (it

reject or loops on w); reject 〈M, w〉

Theorem REGULARTM = { 〈M〉 | M is a TM and L(M) is regular } is undecidable

Proof
Suppose REGULARTM is decidable
 Let R be a decider for REGULARTM
 (*) Construct TM S that uses R to decide ATM
 ATM is undecidable ⇒⇐
REGULARTM is undecidable

CS 5104 course notes - 5 - March 22, 2006

S = “ On input 〈M, w〉:
5. Construct M2 that accepts all string in the non-regular language 0n1n, and accepts

all other string only if M accepts w.
[therefore if M accepts w, M2 recognizes Σ*, which is regular]
(M2 = On x: if x has form 0n1n, accept else Run M on w; if M accepts, accept)
[M2 is not a decider]
[we are not running it, we are merely constructing it]

6. Run R on M2
7. R rejects M2 ⇒ L(M2) is regular ⇒ M2 accepts all strings ⇒ M accepts w;

accept 〈M, w〉
8. R accepts M1 ⇒ L(M1) is not regular ⇒ M2 only accepts string of form 0n1n ⇒

M does not accept w (it reject or loops on w); reject 〈M, w〉 ”

Theorem EQTM = { 〈M1, M2〉 | L(M1) = L(M2) } is undecidable

Proof
(show that if EQTM is decidable, so is ETM) [fairly easy]

Theorem ALLCFG = { 〈G〉 | G is a CFG and L(G) = Σ* }

[proof is in book; non-trivial]

The Domino Problem (PCP)

[describe the domino problem, state that its undecidable]

A single domino:

!

a

ab

"

$
%

& '

A set of dominos:

!

b

ca

"

$
%

& '
,
a

ab

"

$
%

& '
,
ca

a

"

$
%

& '
,
abc

c

"

$
%

& '
(
)
*

+
,
-

Problem: write a program that list the dominos (repeats OK) so that:

top string of symbols = bottom string of symbols (if such a listing exists)

For example:

!

a

ab

"

$
%

& '
b

ca

"

$
%

& '
ca

a

"

$
%

& '
a

ab

"

$
%

& '
abc

c

"

$
%

& '
 is a solution to the set above.

Impossible! [Not that it “takes to long” you can’t do it on a computer]

[next week : mapping reducibility]

