Christopher G. Langton
Center for Nonlinear Studies, Los Alamos Nationa! Laboratory, Los Alamos, NM 87545
internet address cgl@!anl.gov

Artificial Life

Vitalism amounted to the assertion that living things do not behave as
though they were nothing but mechanisms constructed of mere material
components; but this presupposes that one knows what mere material com-
ponents are and what kind of mechanisms they can be built into.

— C.H. Waddington, The Nature of Life.

Artificial Life is the study of man-made systems that exhibit behaviors char-
acteristic of natural living systems. It complements the traditional biologi-
cal sciences concerned with the enalysis of living organisms by attempting
to synthesize life-like behaviors within computers and other artificial me-
dia. By extending the empirical foundation upon which biology is based
beyond the cabon-chain life that has evolved on Earth, Artificial Life can
contribute to theoretical biology by locating life-as-we-know-it within the
larger picture of life-as-it-could-be.

Artificial Life, SFI Studies in the Sciences of Complexity,
Ed. C. Langton, Addison-Wesley Publishing Company, 1988

2 Chris Langton

THE BIOLOGY OF POSSIBLE LIFE

Biology is the scientific study of life—in principle anyway. In practice, biology is
the scientific study of life based on carbon-chain chemistry. There is nothing in its
charter that restricts biology to the study of carbon-based life; it is simply that this
is the only kind of life that has been available for study. Thus, theoretical biology
has long faced the fundamental obstacle that it is difficult, if not impossible, to
derive general theories from single examples.

Certainly life, as a dynamic physical process, could “haunt” other physical ma-
terial: the material just needs to be organized in the right way. Just as certainly,
the dynamic processes that constitute life—in whatever material bases they might
occur—must share certain universal features—features that will allow us to recog-
nize life by its dynamic form alone, without reference to its matter. This general
phenomenon of life—life writ-large across all possible material substrates—is the
true subject matter of biology.

Without other examples, however, it is extremely difficult to distinguish es-
sential properties of life-——properties that must be shared by any living system in
principle—f{rom properties that are incidental to life, but which happen to be uni-
versal to life on Earth due solely to a combination of local historical accident and
common genetic descent. Since it is quite unlikely that organisms based on different
physical chemistries will present themselves to us for study in the foreseeable future,
our only alternative is to try to synthesize alternative life-forms ourselves—Artificial
Life: life made by man rather than by nature.

ARTIFICIAL LIFE

Only when we are able to view life-as-we-know-it in the larger context of life-as-it-
could-be will we really understand the nature of the beast. Artificial Life (AL) is a
relatively new field employing a synthetic approach to the study of life-as-it-could-
be. It views life as a property of the organization of matter, rather than a property
of the matter which is so organized.

Whereas biology has largely concerned itself with the material basis of life,
Artificial Life is concerned with the formal basis of life. Biology has traditionally
started at the top, viewing a living organism as a complex biochemical machine,
and worked analytically downwards from there—through organs, tissues, cells, or-
ganelles, membranes, and finally molecules—in its pursuit of the mechanisms of
life. Artificial Life starts at the bottom, viewing an organism as a large popuia-

tion of simple machines, and works upwards synthetically from there—constructing

large aggregates of simple, rule-governed objects which interact with one another
nonlinearly in the support of life-like, global dynamics.

The “key” concept in AL is emergent behavior. Natural life emerges out of
the organized interactions of a great number of nonliving molecules, with no global
controller responsible for the behavior of every part. Rather, every part is a behavor
itself, and life is the behavior that emerges from out of all of the local interactions

Artificial Life . 3

among individual behavors. It is this bottom-up, distributed, local determination of
behavior that AL employs in its primary methodological approach to the generation
of lifelike behaviors.

ARTIFICIALITY

The dictionary! defines the term “artificial” as “made by man, rather than occurring
in nature,” but there is another sense of the term that is more appropriate for the
study of Artificial Life. This sense was best captured by Simon in his excellent
monograph The Sciences of the Artificial®®:

Artificiality connotes perceptual similarity but essential difference, resem-
blance from without rather than within. The artificial object imitates the
real by turning the same face to the outer system...imitation is possible
because distinct physical systems can be organized to exhibit nearly iden-
tical behavior ... Resemblance in belhavior of systems without identity of
the inner systems is particularly feasible if the aspects in which we are in-
terested arise out of the organization of the parts, independently of all but
a few properties of the individual components.

Thus, Artificial Life studies natural life by attempting to capture the behavioral
essence of the constituent components of a living system, and endowing a collection
of artificial components with similar behavioral repertoires. If organized correctly,
the aggregate of artificial parts should exhibit the same dynamic behavior as the
natural system.

This bottom-up modeling technique can be applied at any level of the hierar-
chy of living systems in the natural world—from modeling molecular dynamics on
millisecond time-scales to modeling evolution in populations over millennia. At any
such level, behavioral primitives are identified, rules for their behavior in response
to local conditions are specified, the primitive behavors are organized similarly to
their natural counterparts, and the behavior of interest is allowed to emerge “on the
shoulders” of all of the myriad local interactions among low-level primitives taken
collectively.

The ideal tool for this synthetic approach to the study of life is the computer.
However, the traditional computer program—a centralized control structure with
global access to a large set of predefined data-structures—is inappropriate for syn-
thesizing life within computers. A new approach to computation is required, one
that focuses on ongoing dynamic behavior rather than on any final result.

The essential features of computer-based Artificial Life models are:

~

m They consist of populations of simple programs or specifications.

m There is no single program that directs all of the other programs.

m Each program details the way in which a simple entity reacts to local situations
in its environment, including encounters with other entities.

m There are no rules in the system that dictate global behavior.

4 Chris Langton

® Any behavior at levels higher than the individual programs is therefore emer-
gent.

To illustrate, consider modeling a colony of ants. We would provide simple
specifications for the behavioral repertoires of different castes of ants, and create
lots and lots of instances of each caste. We would start up this population of “an-
tomata” (a term coined by Doyne Farmer) from some initial configuration within a
simulated two-dimensional environment. From then on, the behavior of the system
would depend entirely on the collective results of all of the local interactions be-
tween individual antomata and between individual antomata and features of their
environment. There would be no single “drill-sergeant” antomaton choreographing
the ongoing dynamics according to some set of high-level rules for colony-behavior.
The behavior of the colony of antomata would emerge from out of the behaviors of
the individual antomata themselves, just as in a real colony of ants.

Each of these antomata is a behavor. We will identify such behavors as simple
machines. Artificial Life is concerned with tuning the behaviors of such low-level
machines so that the behavior that emerges at the global level is essentially the
same as some behavior exhibited by a natural living system.

THE ANIMATION OF MACHINES

animate tr.v. 1. To give life to; fill with life.!

How are we to go about animating machines? How are we to go about bringing
machines to life—or bringing life to machines?

The etymological ancestry of the term “animate” goes back to the Indo-Euro-
pean root ane meaning “to breathe,” which is also ancestral to the Latin animus,
denoting reason, mind, soul, spirit, life, breath, and etc. This corresponds to the
notion that life is some kind of “energy,” “force,” or “essence”—that which leaves
the physical body upon death, and lacking which mere material flesh and bone
could not live. Thus, throughout historical time, the notion of giving life to some
material object involved the act of “breathing” this mystical force or essence into
an otherwise inanimate material body.

This notion that life was an extra “something” necessary over and above the
detailed organization of a material organism is known as vitalism. Vitalism was
championed especially strongly during the last two centuries as a defense against
the growth of materialism and the scientific method which, especially after Dar-
win, threatened to explain everything in nature—including man. Worse vet, they
threatened to do so without recourse to the supernatural or to God, but only by
reference to everyday physical phenomena and materials, thereby removing man
from his exalted position in this universe of otherwise mere material objects.

Biologists today reject vitalism, believing rather that life as we know it will
eventually be explainable completely within the context of biochemistry. Thus,
most biologists would agree—in principle anyway—with the following statement:

Antificial Life 5

living organisms are nothing more than complex biochemzical mach.in.es. Howe\:'er,
they are different from the machines of our everyday experience. A llvmg organism
is not a single, complicated biochemical machine. Rather it 'must t?e v1ewed. as a
large population of relatively simple machines. The complexity of its behavior 1s
due to the highly nonlinear nature of the interactions between all. of the mfm.berf
of this polymorphic population. To animate machines, therefore', is not to “bring
life to @ machine; rather it is to organize a population of machines in such a way
that their interactive dynamics is “alive.”

THE BEHAVIOR GENERATION PROBLEM

Artificial Life is concerned with generating lifelike behavior. Thus,ﬁ it foc.uses on the
problem of creating behavior generators. A good place to 'start is to identify the
mechanisms by which behavior is generated and controlled in natural systen}s, and
to recreate these mechanisms in artificial systems. This is the course we will take
later in this paper. '

The related field of Artificial Intelligence is supposedly conceme:d with gen-
erating intelligent behavior. It, too, focuses on the problem (')f cre.atmg beh.av1or
generators. However, although it initially looked to natural intelligence to iden-
tify its underlying mechanisms, these mechanisms were not known, nor are they
today. Therefore, following an initial flirt with neural nets, Al bef:ame wedded to
the only other known vehicle for the generation of complex behavior: the te.chn.ol-
ogy of serial computer programming. As a consequence, from the very b.eglnm.ng
Artificial Intelligence embraced an underlying methodolggy for the generation of in-
telligent behavior that bore no demonstrable relationship to the method. by .whlch
intelligence is generated in natural systems. In fact, AT has focu§ed prl.marll.y on
the production of intelligent solutions rather than on the prodgctlon (?f intelligent
behavior. There is a world of difference between these two possible foci.

By contrast, Artificial Life has the great good fortune that many of the mecha-
nisms by which behavior arises in natural living systems are now known. There are
still many holes in our knowledge, but the general picture is in place. Therefore,
Artificial Life can remain true to natural life, and has no need to resort tp the sqrt
of infidelity that is only now coming back to haunt Al. Furthermore, A'rtlﬁclal Life
is not concerned with building systems that reach some sort of solution. For AL
systems, the ongoing dynamics is the behavior of interest, not the state ultimately
reached by that dynamics. . o .

The key insight into the natural method of behavior gen.eratlor‘l‘ is gélned b?:
noting that nature is fundamentally parallel. This is reﬂe.cted in the “architecture
of natural living organisms, which consist of many millions of part‘,s, gach one of
which has its own behavioral repertoire. Living systems are highly distributed, and
quite massively parallel. If our models are to be true.t(? life,A they must also be
highly distributed and quite massively parallel. Indeed, it is unlikely that any other
approach will prove viable.

6 Chris Langton

PREVIEW

In the remainder of the paper, we will discuss a number of different aspects of the
field of Artificial Life. First we will review the history of man’s attempts to simulate
life, trying to identify major threads of intellectual development that have proven
essential to the enterprise.

Second, we will review the genotype/phenotype distinction in living organisms,
viewing the genotype as a specification for machinery, and the phenotype as the
behavior of the machinery so specified. We will then generalize the concepts of
genotype and phenotype, so that we may apply them to the task of generating
behavior in artificial systems.

Next, we will review the methodology of recursively generated objects, which
makes natural use of the genotype/phenotype distinction, and we will give examples
of its application to the generation of specific lifelike behaviors. Finally we discuss
the problem of generating behavior generators, for which we turn to the process of
evolution, and a discussion of Genetic Algorithms.

Throughout, the focus will be on machines and the behaviors that they are
capable of generating. The field of Artificial Life is unabashedly mechanistic and
reductionist. However, this new mechanism—based as it is on multiplicities of ma-
chines and on recent results in the fields of nonlinear dynamics, chaos theory, and

the formal theory of computation—is vastly different from the mechanism of the
last century.

HISTORICAL ROOTS OF ARTIFICIAL LIFE

Mankind has a long history of attempting to map the mechanics of his contemporary
technology onto the workings of nature, trying to understand the latter in terms of
the former.

The earliest mechanical technologies provided tools that extended man’s phys-
ical abilities and greatly reduced the labor required to make a living. Early tech-
nologies yielded tools for moving water, for manipulating stone and timber, and for
obtaining and processing food. Tools allowed mankind to alter the natural order of
things to suit his purposes and needs.

However, there was much about nature that could not be altered—such as the
progression of the seasons—in the face of which man had to alter ks behavior to fit
the natural order of things. In order to do so, it was useful to be able to build models
of nature that allowed predictions to be made about when certain events would—or
should—take place. Models were developed that allowed the anticipation of floods,
the determination of when to plant and when to harvest food, and the prediction
of the motion of the sun, moon, and planets through the heavens. Models allowed

man to alter kis behavior in order to take fuller advantage of the natural order of
things.

Adificial Life 7

Building a model is a little bit like building a machine of some sort. The art of
modeling is a technology in itself, one which produced tools that extended man’s
mental abilities; tools of thought which greatly reduced the mental labor required
to make a living. When the mechanical technology of the time was sufficiently
advanced, these tools of thought were eventually committed to hardware, becoming
physical machines. Thus, the history of machines involves a continuing process
of rendering in hardware progressively more complicated sequences of actions—
physical and/or mental—previously carried out solely by recourse to muscle and
brain.

It is not surprising, therefore, that early models of life reflected the principal
technology of their era. The earliest models were simple statuettes and paintings—
works of art which captured the static form of living things. Later, these statues were
provided with articulated arms and legs in the attempt to capture the dynamic form
of living things. These simple statues incorporated no internal dynamics, requiring
human operators to make them behave.

The earliest mechanical devices that were capable of generating their own be-
havior were based on the technology of water transport. These were the early Egyp-
tian water clocks called Clepsydra. These devices made use of a rate-limited process
—in this case the dripping of water through a fixed orifice—to indicate the progres-
sion of another process—the position of the sun. Ctesibius of Alexandria developed
a water-powered mechanical clock around 135 B.C. which employed a great deal of
the available hydraulic technology—including floats, a siphon, and a water-wheel-
driven train of gears.

In the first century A.D., Hero of Alexandria produced a treatise on Pneumatics,
which described, among other things, various gadgets in the shape of animals and
humans that utilized pneumatic principles to generate simple movements.

However, it was really not until the age of mechanical clocks that artifacts
exhibiting complicated internal dynamics became possible. Around 850 A.D., the
mechanical escapement was invented, which could be used to regulate the power
provided by falling weights. This invention ushered in the great age of clockwork
technology. The earliest mechanical clock to make use of this regulation scheme
seems to have been developed by Richard of Wallingford in 1326. Later, following
Galileo, came pendulum clocks, and further ingenious developments in escapements
for the regulation of rate. Throughout the Middle Ages and the Renaissance, the
history of technology is largely bound up with the technology of clocks. Clocks often
cons[t]ituted the most complicated and advanced application of the technology of an
era.ll

Perhaps the earliest clockwork simulations of life were the so-called “Jacks”
mechanical “men” incorporated in early clocks which would swing a hammer tc
strike the hour on a bell. The word “jack” is derived from “jaccomarchiadus,”
which means “the man in the suit of armour.” These accessory figures retained thei
popularity even after the spread of clock dials and hands—to the extent that clocks

I:I]This association of machinery with the inexorable flow of time may be largely responsible fo:

the spectre of predestination associated with the early philosophy of mechanism.

8 Chris Langton

were eventually developed in which the function of time-keeping was secondary to
the control of large numbers of figures engaged in various activities, even acting out
entire plays.

Finally, clockwork mechanisms appeared which had done away altogether with
any pretense at time-keeping. These “automata” were entirely devoted to imparting
lifelike motion to a mechanical figure or animal. These mechanical automaton simu-
lations of life included such things as elephants, peacocks, singing birds, musicians,
and even fortune tellers.

This line of development reached its peak in the famous duck of Vaucanson,
described as “an artificial duck made of gilded copper who drinks, eats, quacks,
splashes about on the water, and digests his food like a living duck.”t?]

There has never been a more famous automaton than Vaucanson’s duck.
In 1735 Jacques de Vaucanson arrived in Paris at the age of 26. Under
the influence of contemporary philosophic ideas, he had tried, it seems, to
reproduce life artificially.

Unfortunately, neither the duck itself nor any technical descriptions or dia-
grams remain that would give the details of its construction. The complexity of
the mechanism is attested to by the fact that one single wing contained over 400
articulated pieces.

One of those called upon to repair Vaucanson’s duck was a “mechanician”
named Reichsteiner, who was so impressed with it that he went on to build a duck
of his own—also now lost—which was exhibited in 1847. Here is an account of this
duck’s operation from the newspaper Das Freie Wort:

After a light touch on a point on the base, the duck in the most natural
way in the world begins to look around him, eyeing the audience with
an intelligent air. His lord and master, however, apparently interprets this
differently, for soon he goes off to look for something for the bird to eat. No
sooner has he filled a dish with oatmeal porridge than our famished friend
plunges his beak deep into it, showing his satisfaction by some characteristic
movements of his tail. The way in which he takes the porridge and swallows
it greedily is extraordinarily true to life. In next to no time the basin has
been half emptied, although on several occasions the bird, as if alarmed by
some unfamiliar noises, has raised his head and glanced curiously around
him. After this, satisfied with his frugal meal, he stands up and begins

to flap his wings and to stretch himself while expressing his gratitude by
several contented quacks.

But most astonishing of all are the contractions of the bird’s body clearly
showing that his stomach is a little upset by this rapid meal and the effects
of a painful digestion become obvious. However, the brave little bird holds
out, and after a few moments we are convinced in the most concrete manner

[2]See Chapuis7 regarding all quotes concerning these mechanical ducks.

1

Artificial Life 9

that he has overcome his internal difficulties. The truth is that the smell
which now spreads through the room becomes almost unbearable. We wish
to express to the artist inventor the pleasure which his demonstration gave
to us.

Figure 1 shows two views of one of tlhe ducks—there is some controversy as to
whether it is Vaucanson’s or Reichsteiner’s.

THE DEVELOPMENT OF CONTROL MECHANISMS

Out of the technology of the clockwork regulation of automata came the more
general—and perhaps ultimately more important—technology of process control.
As attested to in the descriptions of the mechanical ducks, some of the clockwork
mechanisms had to control remarkably complicated actions on the part of the au-
tormnata, not only powering them but sequencing them as well.

Control mechanisms evolved from early, simple devices—such as a lever at-
tached to a wheel which converted circular motion into linear motion—to later,
more complicated devices—such as whole sets of cams upon which would ride
many interlinked mechanical arms, giving rise to extremely complicated automaton
behaviors.

FIGURE 1 Two views of the mechanical duck attributed to Vaucanson. Printed in
Automata: A Historical and Technological Study by Alfred Chapuis and Edmond Droz,
published by B. A. Batsford Ltd.

10 Chris Langton

FIGURE 2 Two views of a drawing automaton built by the Jaquet-Droz family. Printed
in Automata: A Historical and Technological Study by Alfred Chapuis and Edmond
Droz, published by B. A. Batsford Ltd.

Eventually programmable controllers appeared, which incorporated such de-
vices as interchangeable cams, or drums with movable pegs, with which one could
program arbitrary sequences of actions on the part of the automaton. The writ-
ing and picture drawing automata of Figure 2, built by the Jaquet-Droz family,
are examples of programmable automata. The introduction of such programmable
controllers was one of the primary developments on the road to general purpose
computers.

ABSTRACTION OF THE LOGICAL “FORM” OF MACHINES

During the early part of the 20" century, the formal application of logic to the
mechanical process of arithmetic lead to the abstract formulation of a “procedure.”
The work of Church, Kleene, Godel, Turing, and Post formalized the notion of a
logical sequence of steps, leading to the realization that the essence of a mechan-
ical process—the “thing” responsible for its dynamic behavior—is not a thing at
all, but an abstract control structure, or “program”—a sequence of simple actions
selected from a finite repertoire. Furthermore, it was recognized that the essential

—

Artificial Life 1"

features of this control structure could be captured within an abstract set of rules—
a formal specification— without regard to the material out of which the machine
was constructed. The “logical form” of a machine was separated from its material
basis of construction, and it was found that “machineness” was a property of the
former, not of the latter. Of course, the principle assumption made in Artificial Life
is that the “logical form” of an organism can be separated from its material basis
of construction, and that “aliveness” will be found to be a property of the former,
not of the latter.

Today, the formal equivalent of a “machine” is an algorithm: the logic un-
derlying the dynamics of an automaton, regardless of the details of its material
construction. We now have many formal methods for the specification and opera-
tion of abstract machines, such as programming languages, formal language theory,
automata theory, recursive function theory, etc. Many of these have been shown to
be logically equivalent.

Once we have learned to think of machines in terms of their abstract, formal
specifications, we can turn around and view abstract, formal specifications as po-
tential machines. In mapping the machines of our common experience to formal
specifications, we have by no means exhausted the space of possible specifications.
Indeed, most of our individual machines map to a very small subset of the space of
specifications—a subset largely characterized by methodical, boring, uninteresting
dynamics. When placed together in aggregates, however, even the simplest machines
can participate in ezxiremely complicated dynamics.

GENERAL PURPOSE COMPUTERS

Various threads of technological development—programmable controllers, calculat-
ing engines, and the formal theory of machines—have come together in the general
purpose, stored program computer. Programmable computers are extremely gen-
eral behavior generators. They have no intrinsic behavior of their own. Without
programs, they are like formless matter. They must be told how to behave. By
submitting a program to a computer—that is: by giving it a formal specification
for a machine—we are telling it to behave as if it were the machine specified by
the program. The computer then “emulates” that more specific machine in the
performance of the desired task. Its great power lies in its plasticity of behavior.
If we can provide a step-by-step specification for a specific kind of behavior, the
chameleon-like computer will exhibit that behavior. Computers should be viewed
as second-order machines—given the formal specification of a first-order machine,
they will “become” that machine. Thus, the space of possible machines is directly
available for study, at the cost of a mere formal description: computers “realize”
abstract machines.

12 Chris Langton

FORMAL LIMITS OF MACHINE BEHAVIORS

Although computers—and by extension other machines—are capable of exhibiting
a bewilderingly wide variety of behaviors, we must face two fundamental limitations
on the kinds of behaviors that we can expect of computers.

The first limitation is one of computability in principle. There are certain be-
haviors that are “uncomputable”—behaviors for which no formal specification can
be given for a machine which will exhibit that behavior. The classic example of this
sort of limitation is Turing’s famous halting problem: can we give a formal specifica-
tion for a machine which, when provided with the description of any other machine
together with its initial state, will—by inspection alone—determine whether or
not that machine will reach its halt state? Turing proved that no such machine
can be specified. Rice and others?® have extended this undecidability result to the
determination—by inspection alone—of any non-trivial property of the future be-
havior of an arbitrary machine.

The second limitation is one of computability in practice. There are many be-
haviors for which we do not know how to specify a sequence of steps which will
cause the computer to exhibit that behavior. We can automate what we know how
to do already, but there is much that we do not know how to do. Thus, although
a formal specification for a machine which will exhibit a certain behavior may be
possible in principle, we have no formal procedure for producing that formal spec-
ification in practice, short of a trial-and-error search through the space of possible
descriptions.

We need to separate the notion of a formal specification of a machine—that is,
a specification of the logical structure of the machine—from the notion of a formal
specification of a machine’s behavior—that is, a specification of the sequence of
transitions that the machine will undergo. We have formal systems for the former,
but not for the latter. In general, we can neither derive behaviors from specifications
nor derive specifications from behaviors.

The moral is: in order to determine the behavior of some machines, there is
no recourse but to run them and see how they behave! This has consequences for
the methods by which we (or nature) go about generating behavior generators
themselves, which we will take up in the section on evolution.

FROM MECHANICS TO LOGIC

With the development of the general purpose computer, attention turned from the
mechanics of life to the logic of life. The computer’s tremendous capacity for emula-
tion made it possible to explore the behaviors of a great many possible machines—
machines which would probably never have been committed to hardware. The 1950’s

and 1960’s saw an explosion of interest in computer and electro-mechanical models
of life.

Antificial Life 13

VON NEUMANN AND AUTOMATA THEORY The first computational approach to the
generation of lifelike behavior was due to the brilliant Hungarian mathematician
John von Neumann. In the words of his colleague Arthur W. Burks, von Neumann
was interested in the general question®:

What kind of logical organization is sufficient for an automaton to repro-
duce itself? This question is not precise and admits to trivial versions as well
as interesting ones. Von Neumann had the familiar natural phenomenon
of self-reproduction in mind when he posed it, but he was not trying to
simulate the self-reproduction of a natural system at the level of genetics
and biochemistry. He wished to abstract from the natural self-reproduction
problem its logical form. [emphasis added]

In von Neumann’s initial thought experiment (his “kinematic model”), a ma-
chine floats around on the surface of a pond, together with lots of machine parts.
The machine is a universal constructor: given the description of any machine, it
will locate the proper parts and construct that machine. If given a description of
itself, it will construct a copy of itself. This is not quite self-reproduction, however,
because the offspring machine will not have a description of itself and hence could
not go on to construct another copy. So, von Neumann’s machine also contains a
description copier: once the offspring machine has been constructed, the “parent”
machine constructs a copy of the description that it worked from and attaches it
to the offspring machine. This constitutes genuine self-reproduction. However, von
Neumann decided that this model did not properly distinguish the logic of the pro-
cess from the material of the process, and looked about for a completely formal
system within which to model self-reproduction.

Stan Ulam—one of von Neumann’s colleagues at Los Alamos who also inves-
tigated dynamic models of pattern production and competition*’—suggested an
appropriate formalism, which has come to be known as a cellular automaton (CA).
In brief, a CA model consists of a regular lattice of finite automata, which are the
simplest formal models of machines. A finite automaton can be in only one of a
finite number of states at any given time, and its transitions between states from
one time step to the next are governed by a state-transition table: given a certain
input and a certain internal state, the state-transition table specifies the state to be
adopted by the finite automaton at the next time step. In a CA, the necessary input
is derived from the states of the automata at neighboring lattice points. Thus, the
state of an automaton at time t + 1 is a function of the states of the automaton
itself and its immediate neighbors at time ¢. All of the automata in the lattice obey
the same transition table and every automaton changes state at the same instant,
time step after time step. CA’s are good examples of the kind of computational
paradigm sought after by Artificial Life: bottom-up, parallel, local-determination
of behavior.

14 Chris Langton

-

COMPLETED PORTION OF
CONSTRUCTED AUTOMATON
=R
> 1218l B
4] ¥
ES
Rt
£% AUTOMATON | i
(X, Yo A ——————~ 4
7]
__1
(0,0) 4]
S EEREPEREEEREEREEERR M
. ORI 4
g CONSTRUCTING ARM
g
=< | CONSTRUCTION CONTROL
03: {NOT DRAWN TO SCALE)
0
<
Q
o
—— o - E— o = —
g
Xo70+@1 8, Xoo * Aany g-1
= Vo
£ TAPE CONTROL
& (NOT DRAWN TO SCALE) AR EEEEREE
& TAPE
L

FIGURE 3 Schematic diagram of von Neumann’s self-reproducing CA configuration.
From Burks,® reprinted courtesy of University of lliinois Press.

Von Neumann was able to embed the logical equivalent of his kinematic model
as an initial pattern of state assignments within a large CA lattice using 29 states
per cell (Figure 3). Although von Neumann’s work on self-reproducing automata
was left incomplete at the time of his death, Arthur Burks organized what had been
done, filled in the remaining details, and published it together with a transcription
of von Neumann’s 1949 lectures at the University of Illinois entitled “Theory and
Organization of Complicated Automata,” in which he gives his views on various
problems related to the study of complex systems in general 48

Von Neumann’s CA model was a constructive proof that an essential charac-
teristic beliavior of living things—self-reproduction—was achievable by machines.

Atificial Life 15

Furthermore, he determined that any such method must make use of the infor-
mation contained in the description of the machine in two fundamentally different
ways:

m INTERPRETED, as instructions to be executed in the construction of the
offspring.

m UNINTERPRETED, as passive data to be duplicated to form the description
given to the offspring.

Of course, when Watson and Crick unraveled the mystery of DNA, they discovered
that the information contained therein was used in precisely these two ways in the
processes of transcription/translation and replication.

In describing his model, von Neumann pointed out that®:

By axiomatizing automata in this manner, one has thrown half of the prob-
lem out the window, and it may be the more important half. One has re-
signed oneself not to explain how these parts are made up of real things,
specifically, how these parts are made up of actual elementary particles, or
even of higher chemical molecules.

Whether or not the baby has been disposed of depends on the questions we are
asking. If we are concerned with explaining how the life that we know emerges from
the known laws of physics and organic chemistry, then indeed the baby has been
tossed out. But, if we are concerned with the more general problem of explaining
how lifelike behaviors emerge out of low-level interactions within a population of
logical primitives, the baby is still with us.

WIENER AND CYBERNETICS The technology of process control—which in its dis-
crete form lead to von Neumann’s automaton approach—lead in its continuous
form to Cybernetics, proposed by Norbert Wiener as “the study of control and
communication in the animal and the machine.”3%%

The term “cybernetics” is derived from the Greek yv@e¢prijrns—or steersman—
which was used by Plato in the sense of “government.” For Wiener, the word im-
parted a sense of goal-oriented, purposeful control of behavior.

Cybernetics had its origin in Wiener’s war-related work on the control of anti-
aircraft fire. An anti-aircraft gun must fire, not at the current position of the target,
but at the spot to which the aircraft will have moved during the flight of the shell.
Thus, the controller must predict, or “anticipate,” the future path of the airplane.
In working out a general mathematical basis for predicting the probable future
course of an observed time-series, Wiener and his colleague Julian Bigelow realized
that it was important to collect information about the deviations between predicted
motion and actual motion. These deviations could then be fed-back as input to the
predictor and treated as corrections to further predictions.

Wiener and Bigelow also realized that improper treatment of the corrective
feedback could result in two different forms of “pathological” behavior on the part

16 Chris Langton

of the controller. If the controller is not sufficiently sensitive to the corrective feed-
back, the corrections will not keep pace with the deviations, and the gap between
predicted motion and actual motion will continue to grow. On the other hand, if
the controller is overly sensitive to the feedback, each corrective maneuver will be
too large, resulting in larger and larger deviations, first to one side and then to
the other. Eventually, this will result in the system becoming hopelessly engaged
in wild oscillations.

The first form of pathological behavior was similar to the condition in humans
and amimals known as Atazig, in which internal sensory feedback from a limb is
insufficient or absent. Wiener and Bigelow asked Arturo Rosenbluth whether the
second form of pathology was also known to occur in humans or animals. Rosenbluth
answered immediately that “purpose tremor,” sometimes observed in patients who
had suffered injuries to the cerebellum, was just such a pathological condition.

Wiener, Bigelow, and Rosenbluth were thus lead to the realization that feedback
played a similar role in a wide variety of natural and artificial systems, and that
a comprehensive program of interdisciplinary research into the functions and espe-
cially the dysfunctions of goal-oriented—or “teleclogical”—machines could reveal
a great deal about the nature of similar mechanisms operating in living organisms.

Von Neumann’s program of the application of discrete mathematics to the
synthesis of behavior and Wiener’s program of the application of continuous math-
ematics to the analysis of behavior are entirely complementary endeavors, and there
is quite a large area of potential overlap between them. Indeed, many of the same
phenomena can be represented equally well within either of the two methodologi-
cal approaches, and it was one of von Neumann’s dreams to develop a continuous
version of his discrete, automaton approach.

THE POST-WAR PERIOD In the years following the publication of von Neumann’s
and Wiener’s approaches, other researchers followed up on the basic ideas—extend-
ing them, simplifying them, and proposing alternative models for the explanation
and synthesis of lifelike behaviors

James Thatcher completed a simplified version of von Neumann’s self-replicat-
ing CA model.#* E.F. Codd developed a version using only eight states per cell.?
Richard Laing demonstrated a clever variation on the von Neumann plan in which
a machine first constructs a description of itself by self-inspection, and then uses
that description to construct a copy of itself.2® This latter model would be capable
of passing on acquired characteristics in Lamarckian fashion, unlike von Neumann’s
model. Laing also developed a system of self-reproducing artificial organisms based
on what he called artificial molecular machines—dynamic “program tapes” inter-
acting within a sort of “soup.” This model attempted to combine in one system the
best features of von Neumann’s CA and kinematic models.2?

Others developed self-reproducing models based on different primitive elements.
Michael Arbib? developed a 2D-lattice model of self-reproduction in which each
lattice point consists of a set of registers in which instructions are stored. The con-
lents of these register sets may be shifted into the registers of neighboring lattice

Arificial Lite 1

e e e T Sl

. -1
r'/‘_r/.wn;r/,m EX PR N

s

FIGURE 4 One of Penrose’s devices for illustrating self-reproduction. Reprinted
courtesy of Scientific American.

points. In fact, whole sets of lattice points may shift their contents in any one ¢
the four cardinal directions simultaneously, the contents moving as a rigid unit, a
if they were held together by chemical bonds.

L.S. Penrose built a series of clever mechanical models illustrating a kind of self
reproduction.3® The basic system consists of a box filled with tilting blocks. Th
blocks have hooks which can engage other blocks in several different arrangements
When a “seed”—consisting of a pair of blocks hooked together in one of the possibl
arrangements—is placed into a box full of unhooked blocks and the box is shake:
vigorously, the seed will induce the rest of the blocks to hook up in pairs exhibitin,
the same conformation as the seed. One of his models is illustrated in Figure 4.

18 Chris Langton

FIGURE 5 Schematic diagram of interactions between two of Grey Walter’s electronic
turtles. Reprinted courtesy of Scientific American.

Homer Jacobson built a self-reproducing train set.?® In this model, linked cars
chug around an oval track together with unlinked cars. A linked set of cars will
pull off onto a siding and direct the construction of a similarly linked set of cars by
switching passing unlinked cars onto an adjacent siding in the correct order. Once
the construction is complete, both linked sets of cars will reenter the oval track.

Grey Walter built a pair of electronic “turtles” named Elmer and Elsie: “imi-
tations of life” which exhibited “free will.”49:50 These turtles would wander around,
attracted to dim light, but repelled by bright light,[®! until their batteries got low, in
which case they would home in on their brightly lit “kennels,” plug into a recharger,
and recharge their batteries. When Walter attached lights to the turtles themselves,
the resulting interactive dynamics became quite complex (Figure 5).

Walter dubbed his turtles Machina speculatriz. In his words?®:

These machines are perhaps the simplest that can be said to resemble ani-
mals. Crude though the are, they give an eerie impression of purposefulness,
independence, and spontaneity. .. Perhaps we flatter ourselves in thinking
that man is the pinnacle of an estimable creation. Yet as our imitation of
life becomes more faithful our veneration of its marvelous processes will
not necessarily become less sincere.

Samuel’s famous checker playing program incorporated a learning algorithm
based on adaptation by natural selection.3® This program quickly learned to play

Blet. Braitenberg's Vehicles.®

Atificial Life 19

checkers better than Samuel. Holland?!22 has investigated many applications of
adaptation by natural selection, and proposed the class of machine-learning tech-
niques known as “genetic algorithms,” of which we will have more to say in the
section on evolution.

Of course, much of the early work in Artificial Life was also ancestral to Ar-
tificial Intelligence. This is certainly true of Samuel’s and Holland’s work. Other
common ancestors include McCulloch and Pitts’ nerve-net models,3! Rosenblatt’s
work on perceptrons,3” and Minsky and Papert’s book on perceptrons.3?

Walter Stahl built several models of cellular activity in which “Turing machines
are used to model! ‘algorithmic enzymes’ which transform biochemicals represented
as letter strings.”4%4! In one work, an entire artificial cell “metabolizes” energy
strings and reproduces itself.*® Stahl also looked into unsolvable problems for a cell
automaton.*?

In the late 1960’s, Aristid Lindenmayer introduced his mathematical models of
cellular interaction in development, now known simply as L-systems. These rela-
tively simple models are capable of exhibiting remarkably complex developmental
histories, supporting intercellular communication and differentiation. Many appli-
cations have been found, especially in modeling the development of the branching
structure of plants. Some simple examples of L-systems are given in the section on
Recursively Generated Objects, as well as in Lindenmayer’s contribution to these
proceedings.

Since 1970, Michael Conrad and various collaborators have developed an in-
creasingly sophisticated series of “artificial world” models for the study of adapta-
tion, evolution, and population dynamics within artificial ecosystems (see Conrad
and Strizich® and Rizki and Conrad3® Later models have focused on individual
fitness as an emergent property of the system.

One unfortunate consequence of the explosive.progress in the technology of
computation was that as more and more energy was devoted to developing practical
applications for discoveries that were originally made in the attempt to model
natural processes, less and less energy was devoted to the sorts of studies that had
lead to these discoveries in the first place.

Thus, Chomsky’s formal language theory was applied to the specification of
programming languages and in the development of compilers. Cellular automata
were applied to the task of image processing and, in general, the pursuit of nature
was set aside in favor of developing practical applications of the original products
of that pursuit. As a consequence, the initial tidal wave of research involving the
computer-based study of life receded, leaving behind various, isolated “tidal pools”
of research, which hung on largely due to the persistence of individual researchers
who made their living doing something eminently more practical from an engineer-
ing point of view.

From about the mid-1970’s until quite recently, although there has been a good
deal of work involving computer-based models of living systems, much of this re-
search has taken place within the confines of a wide variety of disciplines, largely
in isolation from other such efforts. Diffusion of results across these disciplinary

20 Chris Langton

boundaries has been slow or nonexistant. Furthermore, models that produced life-
like behavior but which did not model some specific aspect of natural life were
generally treated as oddities—interesting to be sure, but of questionable scientific
relevance. There was no general recognition that such systems might be worthy
of study on their own rights; that the study of possible life might be every bit as
relevant to the scientific understanding of life as the study of actual life. Instead,
individuals have pursued such models out of their own personal interest, on their
own personal time, and—recently—on their own personal computers.

Many of these pursuits were reported to the larger scientific community by
Martin Gardner in his “Mathematical Games” column in Scientific American. One
such system worthy of note is John Conway’s cellular automaton game of LIFE.!%2°
In this system, a cell will turn “on” if exactly three of its eight neighbors are “on”
and it will stay “on” so long as either 2 or 3 of its neighbors are “on,” otherwise
it will turn “off.” This CA system has been experimented with extensively.334
Many of the configurations seem to have a life of their own. Perhaps the single
most remarkable structure is known as the glider, a quasi-periodic configuration of
period 4 which displaces itself diagonally with respect to the fixed lattice of cells
(see Figure 6).

The glider is one instance of the general class of propagating structures in CA.
These propagating information structures are effectively simple machines—uvirtual
machines-——which crawl around the lattice like so many ants, interacting with other
such machines and with the more passive structures in the array. Their behavior is
reminiscent of the actions of biomolecules—especially enzymes—in their capacity
for recognizing and altering other structures they encounter in their wanderings,
including other propagating structures.?®

Since Martin Gardner’s retirement, A.K. Dewdney has taken up the cause of re-
porting work in Artificial Life in his Scientific American column “Computer Recre-
ations.” Although many of the systems reported were initially conceived as simple
computer games, several—such as Core Wars,!1:1315 Wator,2 Flibs,4 3D-LIFE,!®
etc.—inv.olve the bottom-up determination of lifelike behaviors, and are worthy of
more serious investigation.

There are many other works that could be discussed, but we have reached the
present day and the current state of the field, which these proceedings as a whole
are meant to review. Therefore, we will bring this historical survey to a close with
the following summary.

cos ®ee ® .
®
O ® O ..:o :6 ..é

FIGURE €& Glider propagating with respect to a tixed cell ().

Anificial Life 21

THE ROOTS OF COMPLEX BEHAVIOR

Since the beginning of recorded history, man has attempted to build imitations
of living things. Early attempts captured the “form” of living things in statuary
and paintings, while later attempts sought to “apimate” these static forms by the
use of hidden machinery.

1t is quite clear from a study of the history of attempts to build “living” ar-
tifacts that the material out of which the artifact was constructed was considered
irrelevant—it was the model’s dynamic behavior that mattered. The elusive holy
grail was the construction of a mechanism which, regardless of its constituent ma-
terial, behaves like a living thing.

Most of the more serious attempts, particularly during the long history of clock-
work automata, involved a central “program” of some kind which was responsible for
the model’s dynamic behavior. Whether it was a rotating drum with pegs tripping
levers in sequence, a set of motor driven cams, or some other mechanism—the tune
to which the automaton danced was “called” by central control machinery.

Therein lay the source of the failure of these models and, in my view, the source
of failure of the whole program of modeling complex systems that followed, right up
to—and most especially including—much of the work in Artificial Intelligence. The
most promising approaches to modeling complex systems like life or intelligence are
those which have dispensed with the notion of a centralized global controller, and
have focused instead on mechanisms for the distributed control of behavior.

BIOLOGICAL AUTOMATA

Organisms have been compared to extremely complicated and finely tuned bio-
chemical machines. Since we know that it is possible to abstract the logical form of
a machine from its physical hardware, it is natural to ask whether it is possible to
abstract the logical from of an organism from its biochemical wetware. The field of
Artificial Life is devoted to the investigation of this question.

In the following sections we will look at the manner in which behavior is gen-
erated in bottom-up fashion in living systems. We then generalize the mechanisms
by which this behavior generation is accomplished, so that we may apply them to
the task of generating behavior in artificial systems.

We will find that the essential machinery of living organisms is quite a bit
different from the machinery of our own invention, and we would be quite mis-
taken to attempt to force our preconceived notions of abstract machines onto the
machinery of life. The difference, once again, lies in the exceedingly parallel and
distributed nature of the operation of the machinery of life, as contrasted with the
singularly serial and centralized control structures associated with the machines of
our invention.

22 Chris Langton

GENOTYPES AND PHENOTYPES

The most salient characteristic of living systems, from the behavior generation
point of view, is the genotype/phenotype distinction. The distinction is essentially
one between a specification of machinery—the genotype—and the behavior of that
machinery—the phenotype.

The genotype is the complete set of genetic jnstructions encoded in the linear
sequence of nucleotide bases that makes up an organism’s DNA. The phenotype
is the physical organism itself —tlie structures that emerge in space and time as
the result of the interpretation of the genotype in the context of a particular en-
vironment. The process by which the phenotype develops through time under the
direction of the genotype is called morphogenesis. The individual genetic instruc-
tions are called genes, and consist of short stretches of DNA. These instructions
are “executed”—or ezpressed—when their DNA sequence is used as a template
for transcription. In the case of protein synthesis, transcription results in a dupli-
cate nucleotide strand known as a messenger RNA—or mRNA—constructed by the
process of base-pairing. This mRNA strand may then be modified in certain ways
before it makes its way out to the cytoplasm where, at bodies known as ribosomes,
it serves as a template for the construction of a linear chain of amino acids. The
resulting polypeptide chain will fold up on itself in some complex manner, forming
a tightly packed molecule known as a protein. The finished protein detaches from
the ribosome and may go on to serve as a passive structural element in the cell, or
may have a more active role as an enzyme. Enzymes are the functional molecular
“operators” in the logic of life.

One may consider the genotype as a largely unordered “bag” of instructions,
each one of which is essentially the specification for a “machine” of some sort—
passive or active. When instantiated, each such machine will enter into the ongoing
logical fray in the cytoplasm, consisting largely of local interactions between other
such machines. Each such instruction will be “executed” when its own triggering
conditions are met and will have specific, local effects on structures in the cell.
Furthermore, each such instruction will operate within the context of all of the
other instructions that have been—or are being—executed.

The phenotype, then, consists of the structures and dynamics that emerge
through time in the course of the execution of the parallel, distributed “computa-
tion” controlled by this genetic bag of instructions. Since gene’s interactions with
one another are highly nonlinear, the phenotype is a nonlinear function of the geno-
type, and the label for that nonlinear function is “development.”

GENERALIZED GENOTYPES AND PHENOTYPES

In the context of Artificial Life, we need to generalize the notions of genotype and
phenotype, so that we may apply them in non-biological situations. We will use the
term generalized genotype—or GTYPE—to refer to any largely unordered set of
low-level rules, and we will use the term generalized phenotype—or PTYPE—to

Antificial Life 23

refer to the behaviors and/or structures that emerge out of the interactions among
these low-level rules when they are activated within some specific environment.

The GTYPE, essentially, is the specification for a set of machines, while the
PTYPE is the behavior that results as the machines interact with one another
in the context of a specific environment. This is the bottom-up approach to the
generation of behavior. A set of entities is defined and each entity is endowed
with a specification for a simple behavioral repertoire—a GTYPE—which contains
instructions that detail its reactions to a wide range of local encounters with other
such entities or with specific features of the environment. Nowhere is the behavior
of the set of entities as a whole specified. The global behavior of the aggregate—the
PTYPE— emerges out of the collective interactions among individual entities.

It should be noted that the PTYPE is a multilevel phenomenon. First, there is
the PTYPE associated with each particular instruction—the effect that instruction
has on the entity’s behavior when it is expressed. Second, there is the PTYPE
associated with each individual entity—its individual behavior within the aggregate.
Third, there is the PTYPE associated with the behavior of the aggregate as a whole.

This is true for natural systems as well. We can talk about the phenotypic trait
associated with a particular gene, we can identify the phenotype of an individual
cell, and we can identify the phenotype of an entire multicellular organism—its
body, in effect. PTYPES should be complex and multilevel. If we want to simulate
life, we should expect to see hierarchical structures emerge in our simulations. In
general, phenotypic traits at the level of the whole organism will be the result of
many nonlinear interactions between genes, and there will be no single gene to
which one can assign responsibility for the vast majority of phenotypic traits.

In summary, GTYPES are low-level rules for behavors—i.e., abstract spec-
ifications for “machines”—which will engage in local interactions within a large
aggregate of other such behavors. PTYPES are the behaviors—the structures in
time and space—that develop out of these nonlinear, local interactions (Figure 7).

UNPREDICTABILITY OF PTYPE FROM GTYPE

Nonlinear interactions between the objects specified by the GTYPE provide the
basis for an extremely rich variety of possible PTYPES. PTYPES draw on the
full combinatorial potential implicit in the set of possible interactions between low-
level rules. The other side of the coin, however, is that we cannot predict the
PTYPES that will emerge from specific GTYPES given specific initial structures.
If we wish to maintain the property of predictability, then we must restrict severely
the nonlinear dependence of PTYPE on GTYPE, but this forces us to give up the
combinatorial richness of possible PTYPES. Therefore, a trade-off exists between
behavioral richness and predictability.

As discussed previously, we know that it is impossible in the general case to
determine any nontrivial property of the future behavior of a sufficiently power-
ful computer from a mere inspection of its program and its initial state alone.?® A

24 Chris Langton

Turing machine—the formal equivalent of a general purpose computer—can be cap-
tured within the scheme of GTYPE/PTYPE systems by identifying the machine’s
transition table as the GTYPE and the resulting computation as the PTYPE. From
this we can deduce that in the general case it will not be possible to determine,
by inspection alone, any nontrivial feature of the PTYPE that will emerge from a
given GTYPE in the context of a particular initial configuration. In general, the
only way to find out anything about the PTYPE is to start the system up and
watch what happens as the PTYPE develops under control of the GTYPE.

Similarly, it is not possible in the general case to adduce which specific al-
terations must be made to a GTYPE to effect a desired change in the PTYPE.
The problem is that any specific PTYPE trait is, in general, an effect of many,
many nonlinear interactions between the behavioral primitives of the system. Con-
sequently, given an arbitrary proposed change to the PTYPE, it may be impossible
to determine by any formal procedure exactly what changes would have to be made
to the GTYPE to effect that—and only that— change in the PTYPE. It is not a
practically computable problem. There is no way to calculate the answer—short of
exhaustive search—even though there may be an answer!

Global behaviors and
structures emerge
at this level

DEYELOPMENT

Local rules govern simple
nonlinear interactions at
this level

FIGURE 7 The relationship between GTYPE and PTYPE.

Atiticial Lite 25

The only way to proceed in the face of such an unpredictability result is by
a process of trial and error. However, some processes of trial and error are more
efficient than others. In natural systems, trial and error are interlinked in such a
way that error guides the choice of trials under the process of evolution by natural
selection. It is quite likely that this is the only efficient, general procedure that
could find GTYPES with specific PTYPE traits.

RECURSIVELY GENERATED OBJECTS

In the previous section, we described the distinction between genotype and phe-
notype, and we introduced their generalizations in the form of GTYPE’s and
PTYPE?’s. In this section, we will review a general approach to building GTYPE/
PTYPE systems based on the methodology of recursively generated objects.

A major appeal of this approach is that it arises naturally from the GTYPE/
PTYPE distinction: the local developmental rules—the recursive description itself
—constitute the GTYPE, and the developing structure—the recursively generated
object or behavior itself—constitutes the PTYPE.

Under the methodology of recursively generated objects, the “object” is a struc-
ture that has sub-parts. The rules of the system specify how to modify the most
elementary, “atomic” sub-parts, and are usually sensitive to the confezt in which
these atomic sub-parts are embedded. That is, the “neighborhood” of an atomic
sub-part is taken into account in determining which rule to apply in order to modify
that sub-part. It is usually the case that there are no rules in the system whose
context is the entire structure; that is, there is no use made of global information.
Each piece is modified solely on the basis of its own state and the state of the pieces
“nearby.”

Of course, if the initial structure consists of a single part—as might be the case
with the initial seed—then the context for applying a rule is necessarily global. The
usual situation is that the structure consists of many parts, only a local sub-set
of which determine the rule that will be used to modify any one sub-part of the
structure.

A recursively generated object, then, is a kind of PTYPE, and the recursive
description that generates it is a kind of GTYPE. The PTYPE will emerge under
the action of the GTYPE, developing through time via a process of morphogenesis.

We will illustrate the notion of recursively generated objects with examples
taken from the literature on L-systems, cellular automata, and computer animation.

EXAMPLE 1: LINDENMAYER SYSTEMS

Lindenmayer systems (L-systems) consist of sets of rules for rewriting strings of
symbols, and bear strong relationships to the formal grammars treated by Chom-
sky. We will give several examples of L-systers illustrating the methodology of

26 Chris Langton

recursively generated objects (for a more detailed review, see the paper by Linden-
mayer and Prusinkiewicz in these proceedings).

In the following “X — Y” means that one replaces every occurrence of symbol
“X” in the structure with string “Y".” Since the symbol “X” may appear on the right
as well as the left sides of some rules, the set of rules can be applied “recursively” to
the newly rewritten structures. The process can be continued ad infinitum although
some sets of rules will result in a “final” configuration when no more changes occur.

*

SIMPLE LINEAR GROWTH

Here is an example of the simplest kind of L-system. The rules are contert free,
meaning that the context in which a particular part is situated is not considered
when altering it. There must be only one rule per part if the system is to be
deterministic.

The rules: (the “recursive description” or GTYPE):

1) 4 ~>CB

2) B->4
3) C -> DA
4) D->¢C

When applied to the initial seed structure “A,” the following structural history
develops (each successive line is a successive time step):

time structure rules applied (L to R)
0 A initial "seed"
1 cCB rule 1 replaces A with CB
2 Diaa rule 3 replaces C with DA & rule 2 replaces B with A
3 ccBcCB rule 4 replaces D with C & rule 1 replaces the two
4 oo Cete) . A’s with CB’s

And so forth.

The “PTYPE” that emerges from this kind of recursive application of a simple,
local rewriting rule can get extremely complex. These kinds of grammars (whose
rules replace single symbols) have been shown to be equivalent to the operation of
a finite state machine. With appropriate restrictions, they are also equivalent to
the “regular languages” defined by Chomsky.

BRANCHING GROWTH L-systems incorporate meta-symbols to represent branching
points, allowing a new line of symbols to branch off from the main “stem.”

The following grammar produces branching structures. The “()* and “[]”
notations indicate left and right branches, respectively, and the strings within them
indicate the structure of the branches themselves. The rules—or GTYPE:

Antfficial Life 27

1) 4 -> c[BID
2) B->24
3) c->¢C
4) D -> C(E)r
S) E-~>D

When applied to the starting structure “A,” the following sequence develops (using
linear notation):

time structure rules applied (L to R)
0 A initial “seed".

1 c(BI1D rule 1.

2 cl[Alc(E)A rules 3,2,4.

3 clc[Blplc(prc(BID rules 2,1,3,5,1.

4 c[clalc(E)AIC(C(E)RA)C[AIC(E)A rules 3,3,2,4,3,4,3,2,4.

In two dimensions, the structure develops as follows:

[
DB
1/
N N /
E & DC D
A AV /.B_ --=> (etc)
b/ M/)/
DB C A ————> cc
1/ --> W
I | I |
4 ~=-=> C [[
| | 1 |
t =0 1 2 3 ...and 8o on...

Note that at each step, every symbol is replaced, even if just by another copy of
itself. This allows all kinds of complex phenomena, such as signal propagation along
the structure, which will be demonstrated in the next example,

SIGNAL PROPAGATION In order to propagate signals along a structure, one must
have something more than just a single symbol on the left-hand side of a rule. When
there is more than one symbol on the left-hand side of a rule, the rules are contert
senstiive, l.e., the “context” within which a symbol occurs (the symbols next to
it) are important in determining what the replacement string is. The next example
illustrates why this is critical for signal propagation.

In the following example, the symbol in “{ }’s” is the symbol (or string of
symbols) to be replaced, the rest of the left-hand side is the context, and the
symbols “[” and “]” indicate the left and right ends of the string, respectively.
Suppose the rule set contains the following rules:

28 Chris Langton

1) ey > ¢ a “C" at the left-end of the string remains a “C"

2) c{c} > ¢ a "C" with a "C" to its left remains a 'C"

3) *»{C} -> » a “C" with an "#*" to its left bacomes an "»"

4) {*s}c > ¢ an “#* with a "C" to its right becomes a "C"

§) {*}] > » an "#* at the right end of the string remains am "»"

Under these rules, the initial structure “*CCCCCCC” will result in the “*” being
propagated to the right, as follows:

time structure

*CCeecee
CsCCCCCC
CcaCCCCC
cceaccce
cceescee
CCCCCrCC
CCCCCCAC
CCCCCCCr

NN DW= O

This would not be possible without taking the “context” of a symbol into ac-
count. In general, these kinds of grammars are equivalent to Chomsky’s “context-
sensitive” or “Turing” languages, depending on whether or not there are any re-
strictions on the kinds of strings on the left and right hand sides.

The capacity for signal propagation is extremely important, for it allows ar-
bitrary computational processes to be embedded within the structure, which may
directly affect the structure’s development. The next example demonstrates how
embedded computation can affect development.

EXAMPLE 2: CELLULAR AUTOMATA

Cellular automata (CA) provide another example of the recursive application of a
simple set of rules to a structure. In a CA, the structure that is being updated is
the entire universe: a lattice of finite automata. The local rule set—the GTYPE—
in this case is the transition function obeyed homogeneously by every automaton
in the lattice. The local context taken into account in updating the state of each
automaton is the state of the automata in its immediate neighborhood. The tran-
sition function for the automata constitutes a local physics for a simple, discrete
space/time universe. The universe is updated by applying the local physics to each
“cell” of its structure over and over again. Thus, although the physical structure
itself doesn’t develop over time, its state does.

Within such universes, one can embed all manner of processes, relying on the
context sensitivity of the rules to local neighborhood conditions to propagate infor-
mation around within the universe “meaningfully.” In particular, one can embed
general purpose computers. Since these computers are simply particular configura~
tions of states within the lattice of automata, they can compute over the very set of
symbols out of which they are constructed. Thus, structures—or PTYPES—in this

Artificial Life 29

universe can compute and construct other structures, which also may compute and
construct.
For example, here is the simplest known structure that can reproduce itself{4]

»

NNORNMN NN
NO R NORNOBN
NN N N
NONNNONRONN=SR
NN R e OB
NEUNNRDNNNR

[I N
N =D
N =N
N =N
N

22
71
22

Each number is the state of one of the automata in the lattice. Blank space
is presumed to be in state “0.” The “2”-states form a sheath around the “1”-state
data-path. The “7 0” and “4 0” state pairs constitute signals embedded within
the data-path. They will propagate counter-clockwise around the loop, cloning off
copies which propagate down the extended tail as they pass the T-junction between
loop and tail. When the signals reach the end of the tail, they have the following
effects: each “7 0” signal extends the tail by one unit, and the two “4 0” signals
construct a left-hand corner at the end of the tail. Thus, for each full cycle of the
instructions around the loop, another side and corner of an “offspring loop” will be
constructed. When the tail finally runs into itself after four cycles, the collision of
signals results in the disconnection of the two loops as well as the construction of
a tail on each of the loops.

After 151 time steps, this system will evolve to the following configuration:

2

212

272

202

212
222222272 22222222
2111701702 2170140142
2122222212 20222222012
212 272 272 212
212 202 212 212
242 212 202 212
212 272 272 212
2022222202 21222222122222
2410710712 207107107111112
222222121212 2222222222222

Thus, the initial configuration has succeeded in reproducing itself.
Each of these loops will go on to reproduce itself in a similar manner, giving
rise to an expanding colony of loops, growing out into the array. Color plates 1

[INote added in proof: this structure has been simplified by John Byl in a report to appear in
Physica D.

30 Chris Langton

through 8 show the development of a colony of loops from a single initial loop {for
details, see Langton?"%8).

These embedded self-reproducing loops are the result of the recursive appli-
cation of a rule to a seed structure. In this case, the primary rule that is being
recursively applied constitutes the “physics” of the universe. The initial state of
the loop itself constitutes a little “computer” under the recursively applied physics
of the universe: a computer whose program causes it to construct a copy of itself.
The “program” within the loop computer is also applied recursively to the growing
structure. Thus, this system really involves a double level of recursively applied
rules. The mechanics of applying one recursive rule within a universe whose physics
is governed by another recursive rule had to be worked out by trial and error. This
system makes use of the signal propagation capacity to embed a structure that
itself computes the resulting structure, rather than the “physics” being directly
responsible for developing the final structure from a passive seed.

This captures the flavor of what goes on in natural development: the genotype
codes for the constituents of a dynamic process in the cell, and it is this dynamic
process that is primarily responsible for mediating—or “computing”—the expres-
sion of the genotype in the course of development.

EXAMPLE 3: COMPUTER ANIMATION

The previous examples were largely concerned with the growth and development of
structural PTYPES. Here, we give an example of the development of a behavioral
PTYPE.

Craig Reynolds has implemented a simulation of flocking behavior.3® In this
model—which is meant to be a general platform for studying the qualitatively sim-
ilar phenomena of flocking, herding, and schooling—one has a large collection of
autonomous but interacting objects (which Reynolds refers to as “Boids”), inhab-
iting a common simulated environment.

The modeler can specify the manner in which the individual Boids will respond
to local events or conditions. The global behavior of the aggregate of Boids is strictly
an emergent phenomenon, none of the rules for the individual Boids depend on
global information, and the only updating of the global state is done on the basis
of individual Boids responding to local conditions.

Each Boid in the aggregate shares the same behavioral “tendencies”:

1. to maintain a minimum distance from other objects in the environment,
including other Boids,

2. to match velocities with Boids in its neighborhood, and

3. to move toward the perceived center of mass of the Boids in its neighbor-
hood.

These are the only rules governing the behavior of the aggregate.

Artificial Life 31

These rules, then, constitute the generalized genotype (GTYPE) of the Boids
system. They say nothing about structure, or growth and development, but they
determine the behavior of a set of interacting objects, out of which very natural
motion emerges.

With the right settings for the parameters of the system, a collection of Boids
released at random positions within a volume will collect into a dynamic flock,
which flies around environmental obstacles in a very fluid and natural manner,
occasionally breaking up into sub-flocks as the flock flows around both sides of an
obstacle. Once broken up into sub-flocks, the sub-flocks reorganize around their
own, now distinct and isolated, centers of mass, only to re-merge into a single flock
again when both sub-flocks emerge at the far-side of the obstacle and each sub-flock
feels anew the “mass” of the other sub-flock (Figure 8).

The flocking behavior itself constitutes the generalized-phenotype (PTYPE)
of the Boids system. It bears the same relation to the GTYPE as an organism’s
morphological phenotype bears to its molecular genotype. The same distinction
between the specification of machinery and the behavior of machinery is evident.

DISCUSSION OF EXAMPLES

In all of the above examples, the recursive rules apply to local structures only,

and the PTYPE—structural or behavioral-—that results at the global level emerges
from out of all of the local activity taken collectively. Nowhere in the system are
there rules for the behavior of the system at the global level. This is a much more
powerful and simple approach to the generation of complex behavior than that
typically taken in Al, for instance, where “expert systems” attempt to provide
global rules for global behavior. Recursive, “bottom up” specifications yield much
more natural, fluid, and flexible behavior at the global level than typical “top-down”
specifications, and they do so much more parsimoniously.

It is worthwhile to note that contezt-sensitive rules in GTYPE/PTYPE sys-
tems provide the possibility for nonlinear interactions among the parts. Without
context sensitivity, the systems would be linearly decomposable, information could
not “flow” throughout the system in any meaningful manner, and complex long-
range dependencies between remote parts of the structures could not develop.

There is also a very important feedback mechanism between levels in such sys-
tems: the interactions among the low-level entities give rise to the global level
dynamics which, in turn, affects the lower levels by setting the local context within
which each entity’s rules are invoked. Thus, local behavior supports global dynam-
ics, which shapes local context, which affects local behavior, which supports global
dynamics, and so forth.

32 Chris Langton

FIGURE 8 A flock of “Boids” negotiating a field of columns. Sequence generated by
Craig Reynolds.

GENUINE LIFE IN ARTIFICIAL SYSTEMS It is important to distinguish the onto-
logical status of the various levels of behavior in such sy§tems. At thfe level of the
individual behavors, we have a clear difference in kind: boids are not birds; they are
not even remotely like birds; they have no cohesive physical structure, but rai':he:r
exist as information structures—processes—within a computer. But—'and‘ this is
the critical “but”—at the level of behaviors, flocking Boids and flocking birds are
two instances of the same phenomenon: flocking.

Artificial Life 33

The behavior of a flock as a whole does not depend on the internal details of
the entities of which it is constituted—only on the details of the way in which these
entities behave in each other’s presence. Thus, flocking in Boids is true flocking, and
may be counted as another empirical data point in the study of flocking behavior
in general, right up there with flocks of geese and flocks of starlings.

This is not to say that flocking Boids capture all the nuances upon which
flocking behavior depends, or that the Boid’s behavioral repertoire is sufficient
to exhibit all the different modes of flocking that have been observed—such as the
classic “V” formation of flocking geese. The crucial point is that we have captured—
within an aggregate of artificial entities—a bona-fide lifelike behavior, and that the
behavior emerges within the artificial system in the same way that it emerges in
the natural system.

The same is true for L-systems and the self-reproducing loops. The constituent
parts of the artificial systems are different kinds of things from their natural counter-
parts, but the emergent behavior that they support is the same kind of thing: gen-
uine morphogenesis and differentiation for L-systems, and genuine self-reproduction
in the case of the loops.

The claim is the following: The “artificial” in Artificial Life refers to the com-
ponent parts, not the emergent processes. If the component parts are implemented
correctly, the processes they support are genuine—every bit as genuine as the nat-
ural processes they imitate.

The big claim is that a properly organized set of artificial primitives carrying
out the same functional roles as the biomolecules in natural living systems will
support a process that will be “alive” in the same way that natural organisms are
alive. Artificial Life will therefore be genuine life—it will simply be made of different
stuff than the life that has evolved here on Earth.

EVOLUTION

In the preceding sections, we have mentioned several times the formal impossibil-
ity of predicting the behavior of an arbitrary machine by mere inspection of its
specification and initial state. We must run the machine in order to determine its
behavior in the general case.

The consequence of this unpredictability for GTYPE/PTYPE systems is that
we cannot determine the PTYPE that will be produced by an arbitrary GTYPE
by inspection alone. We must “run” the GTYPE, and let the PTYPE develop in
order to determine the resulting structure and its behavior.

Since, for any interesting system, there will exist an enormous number of po-
tential GTYPES, and since there is no formal method for deducing the PTYPE
from the GTYPE, how do we go about finding GTYPES that will generate lifelike
PTYPES?

34 Chris Langton

Up till now, the process has largely been one of guessing at approprlate
GTYPES, and modifying them by trial and error until they generate the appropri-
ate PTYPES. However, this process is limited by our preconceptions of what the
appropriate PTYPES would be, and by our restricted notions of how to generate
GTYPES. We need to automate the process so that our preconceptions and limited
ability to conceive of machinery do not overly constrain the search for GTYPES
that will yield the appropriate behaviors.

NATURAL SELECTION AMONG POPULATIONS OF MACHINES

Nature, of course, has hit upon the proper mechanism: evolution by the process of
natural selection among variants. The scheme is a very simple one. However, in the
face of the formal impossibility of predicting behavior from machine description
alone, it may well be the only efficient, general scheme for searching the space of
possible GTYPES.

The mechanism of evolution is as follows. A set of GTYPES is interpreted
within a specific environment, forming a population of PTYPES which interact
with one another and with features of the environment in various complex ways.
On the basis of the relative performance of their associated PTYPES, some of
the GTYPES are reproduced in such a way that the copies are similar to—but
not exactly the same as—the originals. These new GTYPES develop PTYPES
which enter into the complex interactions within the environment, and the process
is continued ad infinitum (Figure 9). As expected from the formal limitations on
predictability, GTYPES must be “run” in an environment and their behaviors must
be evaluated explicitly, their implicit behavior cannot be determined in any other
way.

Evolution, therefore, works by selecting descriptions of machines which exhibit
the appropriate behaviors when they are run, and it progresses by creating new
descriptions from those existing descriptions which produced machinery with the
most appropriate behaviors.

development development development

selection
selection
selection

G \

reproductwn reproductlon reproductxon
O,
0
©® @ ®

FIGURE 9 The process of evolution by natural selection.

&
i
¢
1

Artificial Life 35

CRITERIA FOR EVOLUTION Evolution by the process of natural selection will oper-
ate within a population of reproducing machines provided that the following three
criteria are met:

m CRITERION OF HEREDITY—Ofispring are similar to their parents: the
copying process maintains high fidelity.

g CRITERION OF VARIABILITY-—Offspring are not ezactly like their parents
or each other: the copying process is not perfect.

a CRITERION OF FECUNDITY—Variants leave different numbers of offspring:
specific variations have an effect on behavior, and behavior has an effect on
reproductive success.

Of these three criteria, the first two apply primarily to the process by which
GTYPES are copied and modified, and the third applies to the manner in which
PTYPES determine which GTYPES are selected for copying.

GENETIC ALGORITHMS

John Holland has pioneered the application of the process of natural selection to the
problem of machine learning in the form of what he calls the “genetic algorithm”

.{GA).421:22 The GA is a specific method for generating a set of offspring from

a parent population, and is primarily concerned with producing variants having
a high probability of success in the environment. The GA generates variants by
applying genetic operators to the GTYPES of the most successful PTYPES in
the population. The genetic operators consist of (in relative order of importance)
crossover, inversion, and mutation.

The basic outline of the genetic algorithm is as follows:

1. Select pairs of GTYPES according to the success of their respective PTYPES.
The more successful the PTYPE, the more likely that its GTYPE is selected.

2. Apply genetic operators to the pairs of GTYPES selected to create “offspring”
GTYPES.

3. Replace the least successful GTYPES with the offspring generated in step 2.

Despite the seeming simplicity of the GA, Holland has been able to prove
several remarkable theorems about its performance. GA’s, it turns out, are capable
of making optimal use of the past experience of the population, as stored in the
distribution of “alleles” in the GTYPE pool and in the relative success of the
PTYPES associated with the GTYPES in the population.

Based on the number of positions on which they may vary, there are a great
many GTYPES that could potentially be constructed. In a system of any com-
plexity, the number of potential GTYPES is astronomical. If £ is the number of
positions at which two GTYPES might exhibit differences, and A is the average
number of values one might find at each such position, then the size of GTYPE

space is of order N'<. ‘

36 Chris Langton

There is an even larger number of potential PTYPES, since each GTYPE could
determine different PTYPES in different environmental contexts. It is important
to note that a major part of this environmental context is the population of other
PTYPES. Thus, just as the rest of the GTYPE provides an important part of the
context within which a particular part of the GTYPE is interpreted, the rest of the
PTYPES in the population provide an important part of the context within which
a particular PTYPE develops.

What the GA does—and does very well—is to explore this very large space of
possible PTYPES in an intelligent manner. It does so by hunting out the GTYPE
building blocks most often associated with the most successful PTYPES, and bi-
asing the sampling of GTYPE space in favor of offspring which use these highly
rated building blocks in new combinations.

The crossover operator is responsible for most of the “intelligence” in the opera-
tion of the GA. Given two strings which represent GTYPES, the crossover operator
works by swapping segments of the strings from each to the other, as illustrated in
Figure 10. The reason this is so effective an operator is that it tends to maintain
combinations of building blocks that have worked well together in the past, because
it swaps whole groups of building blocks at a time. ‘

Thus, the crossover operator works by producing new combinations of building
blocks, the inversion operator works by permuting the linkege relation between
building blocks, and the mutation operator works by introducing new building
blocks. Taken together, these three operators constitute an extremely general and
powerful mechanism for searching large and unpredictable description spaces, one
which is highly immune to getting hung up on local maxima, because it is “climbing”
many local gradients in parallel and quite often produces new sample points that
fall between local maxima.

The set of all possible subsets of building blocks for constructing GTYPES is
referred to as schema space. A schema is a particular subset of the set of building
blocks that might occur in a particular GTYPE. For instance, the set consisting of
the specific values at sites 2, 3, and 10 of a GTYPE is a schema. A whole GTYPE,
the specific value at every position considered, is another schema, as is the set
consisting of just a specific value at position 22. The set of all possible subsets
of a set is formally referred to as the power set of the set. Thus, schema space
is formally identical to the power set of GTYPES: the space of possible GTYPE
building blocks.

Holland has been able to prove that, under the action of the genetic algorithm,
every schema represented in the population—that is, every represented element of
the power set—will propagate throughout the population in direct proportion to
its own intrinsic fitness. Furthermore, this is achieved without explicitly collecting
information on the fitness of each represented building block. Since each GTYPE
is really an instance of 2¢ distinct schemas, by physically testing a population of
only M GTYPES, the GA is actually gaining information on between 9% and M2¢
schemas.

Artificial Life 37

ATTCGGCTATTCGAGT

I |
I

ATACGCCTACGGCTGA

ATTCGGCTAT TCGAGT
r
ATACGCCTAC GGCTGA

ATTCGGCTATGGCTGA

C §
_________ I

ATACGCCTACTCGAGT

FIGURE 10 Action of the crossover
operator.

This “implicit parallelism” yields robust evolutionary potential. As Holland
puts it*:

[The GA] samples each schema with above-average instances with increas-
ing intensity, thereby further confirming (or disconfirming) its usefulness
and exploiting it (if it remains above-average). This also drives the over-
all average [fitness of the population] upward, providing an ever-increasing
criterion that a schema must meet to be above average. Moreover, the
heuristic employs a distribution of instances, rather than working only
from the “most recent best” instance. This yields both robustness and
insurance against being caught on “false peaks” (local optima) that misdi-
rect development. Overall, the power of this heuristic stems from its rapid
accumulation of better-than-average building blocks.

EMERGENT FITNESS FUNCTIONS

A problem common to many computer models employing evolutionary processes
is that it is very easy to underestimate the complexity of environmental interac-
tions. Most such models provide overly simple environments within which certain
behaviors are preordained as “fit” and others as “unfit.” Such models often contain

38 Chris Langton

clear-cut boundaries between the environments and the “living” systems they x:ur-
ture, and environments are often specified top-down, even when the primary actors
i specified bottom-up. o
. “}i rﬁ:(tilfxl':rft g often extremely difficult to drav.l such §harp Qstmctlons% ll:fe-
tween the living system and its environment, and }nterac.tlo.ns w1t}.1 .and within
the environment are often as complicated as interactan:s w1thm' the 11v1:1g—s.yst.in§’.
Rigid, pre-specified, «ynnatural” environments foster rigid, predictable, “unlifelike

i rogression. .
eVOh;Rt;:}II::,ytl})le gnvironment itself should be specified at. the lowesP pf)ss@le level,
in a bottom-up fashion. The “artificial nature” within which the artlﬁcxa} life-forms
of a model are to evolve must be only implicit in thfe rules of the system, allo:—
ing for much more subtle interactions between the l'lfe—forms and feat}lres of t e
environment. Such systems have much greater potential for Qemf)nstratmg genuine
evolutionary progression. The fitness function, the set 9f criteria that determines
whether an organism is “fit” in its environmen?, should itself bt? an emergent prop-
erty of the system (see the article by Packard in these proceedings).

THE ROLE OF COMPUTERS IN STUDYING LIFE AND OTHER
COMPLEX SYSTEMS

Artificial Intelligence and Artificial Life are each concerned with the appllcatlon' of
computers to the study of complex, natural phenomer‘la. Bqth are concerned with
generating complex behavior. However, the manner in wh1§h each ﬁfeld er.n;.)loys
the technology of computation in the pursuit of its respective goals is strikingly
different. o] '

Al has based its underlying methodology for generating intelligent beh§v1or on
the computational paradigm. That is, AI uses the technf)logy of computation as a
model of intelligence. AL, on the other hand, is attempting to der‘,lt.)p a new com-
putational paradigm based on the natural processes that support living organisms.
That is, AL uses the technology of computation as a tool to explore the dynam1c§ of
interacting information structures. It has not adopted the compu.tatlonal para.d‘l‘gm
as its underlying methodology of behavior generation, nor does it attempt to “ex-
plain” life as a kind of computer program. ‘

One way to pursue the study of Artificial Life would be tc? attempt to cre.ate life
in vitro, using the same kinds of organic chemicals out of ?vhlch we are constltu?ed.
Indeed, there are numerous exciting efforts in this direction. ThlS' wtould certainly
teach us a lot about the possibilities for alternative life-forms -within the carbon-
chain chemistry domain that could have (but didn’t) evolve here. N

However, biomolecules are extremely small and difficult to work with, requiring
rooms full of special equipment, replete with dozens of “postdocs” and graduate
students willing to devote the larger part of their professional careers to the‘ per-
fection of electrophoretic gel techniques. Besides, although the creation of life in

Artificial Life 39

vitro would certainly be a scientific feat worthy of note—and probably even a Nobel
prize—it would not, in the long run, tell us much more about the space of possible
life than we already know.

Computers provide an alternative medium within which to attempt to synthe-
size life. Modern computer technology has resulted in machinery with tremendous
potential for the creation of life in silico.

Computers should be thought of as an important laboratory tool for the study
of life, substituting for the array of incubators, culture dishes, microscopes, elec-
trophoretic gels, pipettes, centrifuges and other assorted wet-lab paraphernalia,
one simple-to-master piece of experimental equipment devoted exclusively to the
incubation of information structures.

The advantage of working with information structures is that information has
no intrinsic size. The computer is the tool for the manipulation of information,
whether that manipulation is a consequence of our actions or a consequence of the
actions of the information structures themselves. Computers themselves will not
be alive, rather they will support informational universes within which dynamic
populations of informational “molecules” engage in informational “biochemistry.”

This view of computers as workstations for performing scientific experiments
within artificial universes is fairly new, but it is rapidly becoming accepted as a
legitimate—even necessary—way of pursuing science. In the days before computers,
scientists worked primarily with systems whose defining equations could be solved
analytically, and ignored those whose defining equations could nrof be so solved.
This was largely the case because, in the absence of analytic solutions, the equations
would have to be integrated over and over again—essentially simulating the time
behavior of the system. Without computers to handle the mundane details of these
calculations, such an undertaking was unthinkable except in the simplest cases.

However, with the advent of computers, the necessary mundane calculations
could be relegated to these idiot-savants, and the realm of numerical simulation
was opened up for exploration. “Exploration” is an appropriate term for the pro-
cess, because the numerical simulation of systems allows one to “explore” the sys-
tem’s behavior under a wide range of parameter settings and initial conditions. The
heuristic value of this kind of experimentation cannot be overestimated. One often
gains tremendous insight into the essential dynamics of a system by observing its
behavior under a wide range of initial conditions.

Most importantly, however, computers are beginning to provide scientists with
a new paradigm for modeling the world. When dealing with essentially unsolv-
able governing equations, the primary reason for producing a formal mathematical
model—the hope of reaching an analytic solution by symbolic manipulation—is
lost. Systems of ordinary and partial differential equations are not very well suited
for implementation as computer algorithms. One might expect that other modeling
technologies would be more appropriate when the goal is the synthesis, rather than
the analysis, of behavior (see Toffoli*® for a good exposition).

This expectation is easily borne out. With the precipitous drop in the cost of
raw computing power, computers are now available that are capable of simulating
physical systems from first principles. This means that it has become possible,

40 Chris Langton

for example, to model turbulent flow in a fluid by simulating the- motions of its
constituent particles—not just approximating changes in concentrat;gri: g‘f particles
at particular points, but actually computing their motions exactly. %% N

What does all of this have to do with the study of life? The most surprising
lesson we have learned from simulating complex physical systems on computers. is
that complez behavior need not have complez roots. Indeed, tremendously intert?stmg
and beguilingly complex behavior can emerge from collections of eztremely simple
components.

This leads directly to the exciting possibility that much of the complex behav-
jor exhibited by nature—especially the complex behavior that we call life—also has
simple generators. Since it is very hard to work backwards from a complex behav-
ior to its generator, but very simple to create generators and synthesize .complex
behavior, a promising approach to the study of complex natural systems. is .to un-
dertake the general study of the kinds of behavior that can emerge from distributed
systems consisting of simple components (Figure 11).

LEVEL OF BEHAVYIORS
Specify PTYPES 7

ANIMATION — LIFE 4——MODEL THIS —) INTELLIGENCE ‘_'nfTRETI.]LFlIt:CEh:«tE

/IJILI\ /I jL.I\

————
armiiciat Lire — QOO0 ¢ MODEL THESE—P

«— CONNECTIONISTS

LEVEL OF BEHAYORS
Specify GTYPESI

FIGURE 11 The bottom-up versus the top-down approach to modeling complex
systems.

Artificial Life 41

NONLINEARITY AND LOCAL DETERMINATION OF BEHAVIOR
LINEAR VS. NONLINEAR SYSTEMS

The distinction between linear and nonlinear systems is fundamental, and provides
excellent insight into why the mechanisms of life should be so hard to find. The
simplest way to state the distinction is to say that linear sysiems are those for
which the behavior of the whole is just the sum of the behavior of its parts, while
for nonlinear systems, the behavior of the whole is more than the sum of its parts.

Linear systems are those which obey the superposition principle. We can break
up complicated linear systems into simpler constituent parts, and analyze these
parts independenily. Once we have reached an understanding of the parts in iso-
lation, we can achieve a full understanding of the whole system by composing our
understanding of the isolated parts. This is the key feature of linear systems: by
studying the parts in isolation, we can learn everything we need to know about the
complete system.

This is not possible for nonlinear systems, which do not obey the superposition
principle. Even if we could break such systems up into simpler constituent parts,
and even if we could reach a complete understanding of the parts in isolation, we
would not be able to combine our understandings of the individual parts into an
understanding of the whole system. The key feature of nonlinear systems is that
their primary behaviors of interest are properties of the intferactions between parts,
rather than being properties of the parts themselves, and these interaction-based
properties necessarily disappear when the parts are studied independently.

Thus, analysis is most fruitfully applied to linear systems. Such systems can
be taken apart in meaningful ways, the resulting pieces solved, and the solutions
obtained from solving the pieces can be put back together in such a way that one
has a solution for the whole system.

Analysis has not proved anywhere near as effective when applied to nonlinear
systems: the nonlinear system must be treated as a whole.

A different approach to the study of nonlinear systems involves the inverse of
analysis: synthesis. Rather than start with the behavior of interest and attempting
to analyze it into its constituent parts, we start with constituent parts and put
them together in the attempt to synthesize the behavior of interest.

Life is a property of form, not matter, a result of the organization of matter
rather than something that inheres in the matter itself. Neither nucleotides nor
amino acids nor any other carbon-chain molecule is alive—yet put them together
in the right way, and the dynamic behavior that emerges out of their interactions
is what we call life. It is effects, not things, upon which life is based—Ilife is a kind
of behavior, not a kind of stuff—and as such, it is constituted of simpler behaviors,
not simpler stuff. Behaviors themselves can constitute the fundamental parts of
nonlinear systems—uwirtual parts, which depend on nonlinear interactions between
physical parts for their very existence. Isolate the physical parts and the virtual
parts cease to exist.2® It is the virtual parts of living systems that Artificial Life is
after: the fundamental atoms and molecules of behavior.

42 Chris Langton

THE PARSIMONY OF LOCAL DETERMINATION OF BEHAVIOR

It is easier to generate complex behavior from the application of simple, local rules
than it is to generate complex behavior from the application of complex, global rules.
This is because complex global behavior is usually due to nonlinear interactions
occurring at the local level. With bottom-up specifications, the system computes the
local, nonlinear interactions explicitly and the global behavior—which was implicit
in the local rules—emerges spontaneously without being treated explicitly.

With top-down specifications, however, local behavior must be implicit in global
rules. This is really putting the cart before the horse! The global rules must “pre-
dict” the effects on global structure of many local, nonlinear interactions— some-
thing which we have seen is intractable, even impossible, in the general case. Thus,
top-down systems must take computational shortcuts and explicitly deal with spe-
cial cases, which results in inflexible, brittle, and unnatural behavior.

Furthermore, in a system of any complexity the number of possible global
states is astronomically enormous, and grows exponentially with the size of the
system. Systems that attempt to supply global rules for global behavior simply
cannot provide a different rule for every global state. Thus, the global states must
be classified in some manner; categorized using a coarse-grained scheme according
to which the global states within a category are indistinguishable. The rules of the
system can only be applied at the level of resolution of these categories. There
are many possible ways to implement a classification scheme, most of which will
yield different partitionings of the global state-space. Any rule based system must
necessarily assume that finer-grained differences don’t matter, or must include a
finite set of tests for “special cases,” and then must assume that no other special
cases are relevant.

For most complex systems, however, fine differences in global state can result
in enormous differences in global behavior, and there may be no way in principle to
partition the space of global states in such a way that specific fine differences have
the appropriate global impact.

On the other hand, systems that supply local rules for local behaviors, can
provide a different rule for each and every possible local state. Furthermore, the
size of the local state-space can be completely independent of the size of the system.
In local rule-governed systems, each local state, and consequently the global state,

can be determined exactly and precisely. Fine differences in global state will result
in very specific differences in local state, and consequently will affect the invocation
of local rules. As fine differences affect local behavior, the difference will be felt
in an expanding patch of local states, and in this manner—propagating from local
neighborhood to local neighborhood—fine differences in global state can result in
large differences in global behavior. The only “special cases” explicitly dealt with
in locally determined systems are exactly the set of all possible local states, and
the rules for these are just exactly the set of all local rules governing the system.

Atificial Life 4:

CONCLUSION: THE EVOLUTION OF WATCHMAKERS

As complex biochemical machines, living organisms have been compared to fine
mechanical watches. In the famous “Argument from Design” this analogy has beer
used as proof of the existence of God—the “Watchmaker” whose existence we must
infer from the evident “design” exhibited by these fine biochemical clockworks. The
most famous formulation of this argument was put forth by William Paley in the
first years of the nineteenth century (see Richard Dawkins’ excellent exposition of
this argument,'® as well as his contribution to these proceedings).

By the middle of the nineteenth century, Darwin had given a better explanation

for the existence of design in nature. During the three-and-one-half billion years
from the pre-biotic soup to the present, the biochemical springs, gears, and balance-
wheels of living organisms have been slowly crafted and fitted together by a “Blind
Watchmaker”: the process of evolution by natural selection.
. Hf)wever, this first great era of evolution is drawing to a close and another one
is beginning. The process of evolution has lead—in us—to “watches” which under-
stand what makes them “tick,” which are beginning to tinker around with their
own mechanisms, and which will soon have mastered the “clockwork” technology
necessary to construct watches of their own design. The Blind Watchmaker has
produced seeing watches, and these “watches” have seen enough to become watch-
makers themselves. Their vision, however, is extremely limited, so much so that
perhaps they should be referred to as near-sighted watchmakers.

With the discovery of the structure of DNA and the interpretation of the genetic
code, a feedback loop stretching from molecules to men and back again has finally
closed. The process of biological evolution has yielded genotypes that code for
phenotypes capable of manipulating their own genotypes directly: copying them
altering them, or creating new ones altogether in the case of Artificial Life. ,
‘ By the middle of this century, mankind had acquired the power to extinguish
life on Earth. By the middle of the next century, he will be able to create it. Of
the two, it is hard to say which places the larger burden of responsibility on our
shoulders. Not only the specific kinds of living things that will exist, but the very
course of evolution itself will come more and more under our contr(’)l. The future
effects of changes we make now are, in principle, unpredictable—we cannot foresee
.all 9f the possible consequences of the kinds of manipulations we are now capable of
mﬂu?ting on the very fabric of inheritance, whether in natural or artificial systems

Yet if we make changes, we are responsible for the consequences. '

How can we justify our manipulations? How can we take it upon ourselves to
crea}te life, even within the artificial domain of computers, and then snuff it out
again l?y halting the program or pulling the plug? What right to existence does
a I).hyS}cal process acquire when it is a “living process,” whatever the medium in
whlch.lt occurs? Why should these rights accrue only to processes with a particular
material constitution and not another? Whether these issues have correct answers
or not, they must be addressed, honestly and openly.

44 Chris Langton

Artificial Life is more than just a scientific or technical challenge, it is als‘o a
challenge to our most fundamental social, moral, philosophical, and religious .behefs.
Like the Copernican model of the solar system, it will force us to re-examine our
place in the universe and our role in nature.

ACKNOWLEDGMENTS

I am grateful for discussions with Richard Bagley, Richard K. Belew, Arthur Burks,
Peter Cariani, A. K. Dewdney, Doyne Farmer, Stephanie Forrest, Ron Fox, John
Holland, Greg Huber, Dan Kaiser, Stuart Kaufiman, Richard Laing, David Langton,
Norman Packard, Steen Rasmussen, Craig Reynolds, Paul Scott, and, of course, the
participants of the Artificial Life workshop.

T AT s T

Arificial Life 4

REFERENCES

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

. American Heritage Dictionary of the English Language.
. Arbib, M. A. (1966), “Simple Self-Reproducing Universal Automata,”

Information and Conirol 9, 177-189.

. Berlekamp, E., J. Conway, and R. Guy (1982), Winning Ways for your

Mathematical Plays (New York: Academic Press).

. Booker, L., D. E. Goldberg, and J. H. Holland (1988), “Classifier Systems

and Genetic Algorithms,” Artificial Intelligence, in press.

. Braitenberg, V. (1984), Vehicles: Experiments in Synthetic Psychology

(Cambridge: MIT Press).

. Burks, A. W. (ed) (1970), Essays on Cellular Automata (Urbana, IL:

University of Illinois Press).

. Chapuis, A., and E. Droz (1958), Automata: A Historical and Technological

Study, trans. A. Reid (London: B.T. Batsford Ltd.).

. Codd, E. F. (1968), Cellular Automata (New York: Academic Press).
. Conrad, M., and M. Strizich (1985), “EVOLVE II: A Computer Model of an

Evolving Ecosystem,” Biosystems 17, 245-258.

Dawkins, R. (1986), The Blind Watchmaker (London: W. W. Norton).
Dewdney, A. K. (1984), “Computer Recreations: In the Game Called Core
War Hostile Programs Engage in a Battle of Bits,” Scientific American
250(5), 14-22.

Dewdney, A. K. (1984), “Computer Recreations: Sharks and Fish Wage an
Ecological War on the Toroidal Planet Wa-Tor,” Scientific American 251(6)
14-22.

Dewdney, A. K. (1985), “Computer Recreations: A Core War Bestiary of
Viruses, Worms and Other Threats to Computer Memories,” Scientific
American 252(3), 14-23.

Dewdney, A. K. (1985), “Computer Recreations: Exploring the Field of
Genetic Algorithms in a Primordial Computer Sea Full of Flibs,” Scientific
American 253(5), 21-32.

Dewdney, A. K. (1987), “Computer Recreations: A Program Called MICE
Nibbles its Way to Victory at the First Core War Tournament,” Scientific
American 256(1), 14-20.

Dewdney, A. K. (1987), “Computer Recreations: The Game of Life Acquires
Some Successors in Three Dimensions,” Scientific American 256(2), 16-24.
Farmer, J. D., T. Toffoli, and S. Wolfram (1984), “Cellular Automata: Pro-
ceedings of an Interdisciplinary Workshop, Los Alamos, New Mexico, March
7-11, 1983, Physica D 10(1-2).

Frisch, U., B. Hasslacher, and Y. Pomeau (1986), “Lattice Gas Automata fo
the Navier-Stokes Eequation,” Physical Review Letiers 56, 1505-1508.
Gardner, M. (1970), “The Fantastic Combinations of John Conway’s New
Solitaire Game ‘Life,” Scientific American 223(4), 120-123.

46

20.
21.

22.

23.
24.

25.

26.
27.
28.
29.
30.

31.

32.
33.
34.

35.

36.
37.
38.

39.

Chris Langton

Gardner, M. (1971), “On Cellular Automata, Self-Reproduction, The Garden
of Eden and the Game of ‘Life,” Scientific American 224(2), 112-117.
Holland, J. H. (1975), Adapiation in Natural and Artificial Systems (Ann
Arbor, MI: University of Michigan Press).

Holland, J. H. (1986), “Escaping Brittleness: The Possibilities of General
Purpose Learning Algorithms Applied to Parallel Rule-Based Systems.,” Ma-
chine Learning II, Eds. R. S. Mishalski, J. G. Carbonell, and T. M. Mitchell
(New York: Kauffman), 593-623. '
Hoperoft, J. E., and J. D. Ullman (1979), Introduction to Automata Theory,
Languages, and Computation (Menlo Park, CA: Addison-Wesley).

Jacobson, H. J. (1958), “On Models of Reproduction,” American Scientist
46(3), 255-284.

Laing, R. (1975), “Artificial Molecular Machines: A Rapproachment between
Kinematic and Tessellation Automata,” Proceedings of the International Sym-
posium on Uniformly Structured Automata and Logic, Tokyo, August, 1975.
Laing, R. (1977), “Automaton Models of Reproduction by Self-Inspection,”
J. Theor. Biol. (1977) 66, 437-456.

Langton, C. G. (1984), “Self-Reproduction in Cellular Automata,” Physica D
10(1-2), 135-144.

Langton, C. G. (1986), “Studying Artificial Life with Cellular Automata,”
Physica D 22, 120-149.

Langton, C. G. (1987), “Virtual State Machines in Cellular Automata,”
Complez Systems 1, 257-271.

Masani, P. (1985), Norbert Wiener: Collected Works (Cambridge, MA:
Massachusetts Institute of Technology Press), Vol. IV.

McCulloch, W. S., and W. Pitts (1943), “A Logical Calculus of the Ideas
Immanent in Nervous Activity,” Bulletin of Mathematical Biophysics 5, 115~
133.

Minsky, M., and S. Papert (1969), Perceptrons: An Introduction to Computa-
tional Geometry (Cambridge, MA: MIT Press).

Penrose, L. S. (1959), “Self-Reproducing Machines,” Scientific American
200(6), 105-113.

Poundstone, W. (1985), The Recursive Universe (New York: William
Morrow).

Reynolds, C. W. (1987), “Flocks, Herds, and Schools: A Distributed Behav-
ioral Model (Proceedings of SIGGRAPH ‘87),” Computer Graphics 21(4),
25-34.

Rizki, M. M., and M. Conrad (1986), “Computing the Theory of Evolution,”
Physica D 22, 83-99.

Rosenblatt, F. (1962), Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms (Washington, D.C.: Spartan Books).

Samuel, A.L. (1959), “Some Studies in Machine Learning using the Game of
Checkers,” IBM J. Res. Dev. 3, 210-229.

Simon, Herbert A. (1969), The Sciences of the Artificial (Boston: MIT Press).

B L .

Attificial Life 47

40. Stahl, W. R. and Goheen, H. E. (1963), “Molecular Algorithms,” J. Theoret.
Biol. 5, 266-287.

41. Stahl, W. R., R. W. Coffin, and H. E. Goheen (1964), “Simulation of Bio-
logical Cells by Systems Composed of String-Processing Finite Automata,”
AFIPS Conference Proceedings - 1964 Spring Joint Computer Conference,
vol. 25, 89-102.

42. Stahl, W. R. (1965), “Algorithmically Unsolvable Problems for a Cell Au-
tomaton,” J. Theoret. Biol. 8, 371-3%4.

43. Stahl, W. R. (1967), “A Computer Model of Cellular Self-Reproduction,”

J. Theoret. Biol. 14, 187-205.

44. Thatcher, J. (1970), “Universality in the von Neumann Cellular Model,”
Essays on Cellular Automate, Ed. A. W. Burks (Urbana, IL: University of
Illinois Press).

45. Toffoli, T. (1984), “Cellular Automata as an Alternative to (Rather than an
Approximation of) Differential Equations in Modeling Physics,” Physica D
10(1-2).

46. Toffoli, T., and N. Margolus (1987), Cellular Automata Machines.
(Cambridge: MIT Press).

47. Ulam, S. (1962), “On some Mathematical Problems Connected with Patterns
of Growth of Figures,” Proceedings of Symposia in Applied Mathematics 14,

-215-224; reprinted in Essays on Cellular Automata, Ed. A. W. Burks
(Urbana, IL: University of Illinois Press).

48. Von Neumann, J. (1966), Theory of Self-Reproducing Automata, edited and
completed by A.W. Burks (Urbana, IL: U. of Illinois Press).

49. Walter, W. G. (1950), “An Imitation of Life,” Scientific American 182(5),
42-45.

50. Walter, W. G. (1951), “A Machine That Learns,” Scientific American 51,
60-63.

51. Weiner, N. (1961), Cybernetics, or Control and Communication in the Animal
and the Machine (New York:, John Wiley); original print in 1948.

52. Wolfram, S. (1986), “Cellular Automaton Fluids 1: Basic Theory,” Journal of
Statistical Physics 45, 471-526.

