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So that we don’t have to write “det” all the time, we will introduce
a shorthand which Lay also uses. Instead of writing det and then square
brackets, we just use vertical lines:

det
[
. . .
]

=
∣∣∣ . . . ∣∣∣.

1 Row Operations and detA

We are first going to talk about some properties of the determinant.

Theorem 1.1. Let A be a square matrix. Assume that B is a matrix produced
from A by performing a single elementary row operation.

• If the row operation interchanged two rows, then detB = − detA;

• If the row operation added a multiple of one row to another, then
detB = detA;

• if the row operation multiplied a row by r, then detB = r detA.

Proof. Assume A is 2× 2:

A =

[
a b
c d

]
. Say we interchange the two rows of A. Then

detB = bc− ad = −(ad− bc) = − detA.
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Assume that we add a multiple of one row to another. Say we added a
multiple s of row 1 to row 2. Then

detB = det

[
a b

c− sa d− sb

]
= a(d− sb)− b(c− sa)

= ad− sab + sab− bc = ad− bc = detA.

If we added a multiple of row 2 to row 1 instead, the proof is similar. Finally,
assume we multiply a row by some r. Then it is easy to see that

detB = rad− rbc = r detA.

In the case that A is bigger than 2 × 2, the proof proceeds by using
cofactor expansion to reduce the properties of the n× n to the properties of
the 2× 2 determinant and then using the results we just proved in the 2× 2
case. For details, see the end of Lay 3.2.

1.1 Efficiently computing detA

Recall from last time that the determinant of a triangular matrix is just the
product of the entries on the main diagonal of the matrix. One of the more
efficient ways to compute a determinant of a general matrix A is to reduce A
to a row echelon form B. Since you get from A to B using only row opera-
tions which add multiples of rows and row operations which interchange rows
(recall the algorithm for row reduction does not multiply rows by constants
until the end, when you are turning the echelon form into the RREF), we
have

detA = (−1)p detB,

where p is the number of row interchanges used in turning A into B. Since
B is in echelon form, detB is just the product of the entries on the main
diagonal of B.

Example 1.2. Let

A =

1 5 7
2 1 −1
1 2 0

 .

Then we compute a row echelon form B of the matrix A:

→

1 5 7
0 −9 −15
0 −3 −7

→
1 5 7

0 −9 −15
0 0 −2

 .
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We used no row interchanges in the production of this row echelon form.
Therefore,

detA =

∣∣∣∣∣∣
1 5 7
0 −9 −15
0 0 −2

∣∣∣∣∣∣ = 18.

This method of finding determinants is generally much faster than cofac-
tor expansion. This is actually generally the algorithm used in computers
for evaluating matrices, because of its efficiency. As an aside: one time when
this method is not so useful is when the matrix is given in terms of variables.
For instance, you may imagine a matrix A whose entries are polynomials in
a variable x, and being asked to solve an equation like detA = 0. Performing
row reduction on a matrix whose entries are variables is quite difficult (you
can try it if you don’t believe me), so cofactor expansion is often the way to
go.

Another way row operations help us compute determinants is by letting
us “factor out” constants, which usually makes computing a row echelon form
easier.

Example 1.3. Let

A =

 3 6 9
10 20 20
−1 −1 1

 .

Then

detA = 3

∣∣∣∣∣∣
1 2 3
10 20 20
−1 −1 1

∣∣∣∣∣∣ = 3 · 10 ·

∣∣∣∣∣∣
1 2 3
1 2 2
−1 −1 1

∣∣∣∣∣∣ .
In this form, it is much easier to compute a row echelon form.

detA = 30

∣∣∣∣∣∣
1 2 3
1 2 2
−1 −1 1

∣∣∣∣∣∣ = 30

∣∣∣∣∣∣
1 2 3
0 0 −1
0 1 4

∣∣∣∣∣∣ = −30

∣∣∣∣∣∣
1 2 3
0 1 4
0 0 −1

∣∣∣∣∣∣ ,
where in the last step we have used a row interchange. Therefore, detA =
(−30)(1)(1)(−1) = 30.
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2 Invertibility and det

The connection to invertibility is now clear.

Theorem 2.1. Let A be an n × n matrix. Then A is invertible if and only
if detA 6= 0.

Proof. A is invertible if and only if it has n pivot positions. This happens
if and only if A has a row echelon form with nonzero entries on the main
diagonal. By what we know about determinants of triangular matrices and
the behavior of det under row operations, A has a row echelon form with
nonzero entries on the main diagonal if and only if detA 6= 0.

This theorem gives us another item to tack onto the list of the Invertible
Matrix Theorem.

3 More properties

Here it will actually be useful to think about the transpose a bit (go recall
the definition of the transpose if you have forgotten).

Theorem 3.1. If A is an n× n matrix, then detA = detAT .

Proof. The theorem is clearly true if A is a 1×1 matrix, because then A = AT .
We now perform “induction”. That is, we assume that the theorem holds for
all values of n up to some number k, then show that this means it must also
hold when n = k + 1.

So let A be a (k + 1)× (k + 1) matrix. Then

detA =
k+1∑
j=1

a1j(−1)1+j detA1j. (1)

Now, if we denote the matrix produced by removing row i and column k from
AT by AT

ik, note that AT
ik = (AT )ki. Also, note that Aik is a k× k matrix, so

its determinant is equal to the determinant of its transpose. Applying this
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in (1) gives

detA =
k+1∑
j=1

a1j(−1)1+j det(Aj1)
T

=
k+1∑
j=1

a1j(−1)1+j det(AT )j1

=
k+1∑
j=1

a1j(−1)1+j detAT
1j

= detAT ,

because this is the cofactor expansion of AT down the first column.

What this theorem means is that if we define elementary column op-
erations the same way as row operations– add a multiple of one column to
another, interchange columns, etc– then these affect the determinant in the
same way as the corresponding row operations.

3.1 Multiplication and linearity

The following theorem will be presented without proof:

Theorem 3.2. If A and B are n× n matrices, then

det(AB) = det(A) det(B).

The standard proof of this theorem uses a clever argument involving
elementary matrices; see Lay for a proof.

Last, we describe the multilinearity of the determinant. Let

A =
[
a1 . . . an

]
be a square matrix. Pick some column–say, the jth column– of A and define a
function f : Rn −→ R as the determinant of the matrix obtained by replacing
column j with the argument of f : that is,

f(x) = det
[
a1 . . . aj−1 x . . . an

]
.

Then f is a linear function. That is, for all scalars c and all vectors x,y, we
have f(cx) = cf(x) and f(x + y) = f(x) + f(y).
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